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Navigation for Legged Mobility: Dynamic Climbing
Max P. Austin , Mario Y. Harper, Jason M. Brown , Emmanuel G. Collins, and Jonathan E. Clark

Abstract—Autonomous navigation through unstructured terrains has
been most effectively demonstrated by animals, who utilize a large set of
locomotive styles to move through their native habitats. While legged robots
have recently demonstrated several of these locomotion modalities (such as
walking, running, jumping, and climbing vertical walls), motion planners
have yet to be able to leverage these unique mobility characteristics. In
this article, we outline some of the specific motion planning challenges
faced when attempting to plan for legged systems with dynamic gaits, with
specific instances of these demonstrated by the dynamic climbing platform
TAILS. Using a unique implementation of sampling-based model predictive
optimization, we demonstrate the ability to motion plan around obstacles on
vertical walls and experimentally demonstrate this on TAILS by navigating
through traditionally difficult narrow gap problems.

Index Terms—Climbing robots, legged locomotion, path planning.

I. INTRODUCTION

Legged robotic platforms using both quasi-static (capable of contin-
uously enforcing stability criterions during movement) and dynamic
behaviors (operating at speeds that intrinsically reduce the control
authority and primarily rely on conservation of momentum for stability)
have demonstrated a vast array of distinct locomotion modalities,
specific examples include walking, running, jumping, crawling, and
wall climbing [1]–[4]. While these modalities provide a wide variety
of navigation options, current motion planning techniques have yet to
leverage these unique modes. While having enabled impressive perfor-
mance, motion planners generally map legged locomotion to the limited
capabilities of traditional wheeled and tracked vehicles [5] or constrain
the behaviors to quasi-static or enforceably stable motions [6]–[9].

These algorithms used in long horizon motion planning (naviga-
tion) are typically based on sampling-based methods [10], heuristic
search approaches [11], [12], or a combination of these. Sampling-
based algorithms have shown great versatility in handling kinodynamic
constraints [13], allowing them to plan for nonholonomic motions and
unique constraints, but they generally cannot handle the constrained
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Fig. 1. (a) TAILS: one of the fastest legged climbing robots. (b) Example
of Full–Goldman style dynamic climbing utilized by TAILS showing pendular
COM trajectory and heading angle deviation (exaggerated for clarity).

computation times of dynamic legged locomotion (on the order of
10 ms), which the heuristic-based planning methods such as those
based on the A* algorithm enable. However, heuristic search planners
require understanding of robot behavior to formulate an effective cost
function that will guide the search toward the goal, something that is
difficult due to the complexity of legged systems employing dynamic
behaviors.

The complex motion characteristics of legged locomotion, especially
dynamic locomotion that has brief flight phases, present some funda-
mental opportunities and challenges to motion planning that are largely
yet to be addressed. These challenges include motion impediment ver-
sus foot placement constraints, postural changes (specifically enforced
body shape changes), unusual (both holonomic and nonholonomic)
motion constraints, and discrete state estimation, and control authority.

The challenges described above, inherent to planning for a wide
variety of legged locomotion, are demonstrated explicitly by dynamic
vertical climbing, which imposes very unusual foot contact and motion
constraints. Navigation within vertical climbing has been limited to
quasi-static foot-step planning [14]–[16], primarily because of the
limited maneuverability of dynamic climbers. Recently, however, ma-
neuverability has been demonstrated on the dynamic climbing platform
TAILS, shown in Fig. 1, which is a member of the family of the fastest
legged climbing robots (capable of climbing upward at over 1.5 body
lengths per second). TAILS, using a single drive motor to actuate both
front legs, is able to instantiate the animal inspired Full–Goldman
climbing dynamics [17]. The Full–Goldman model captures the pendu-
larlike oscillations [see Fig. 1(b)] characteristic of rapidly climbing an-
imals. This style of climbing naturally provides passive self-stabilizing
of heading angle using entirely feedforward control. Maneuverability
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was achieved via upward strafing and dynamic downward locomotion
using the added rear leg actuation, which enables independent relative
body roll and pitch control [18]. Thus, creating the minimal set of
behaviors necessary to navigate through an arbitrary obstacle field.
However, no existing motion planner is capable of utilizing the full
motion capabilities and handling the unique motion constraints imposed
by a platform like TAILS.

Inspired by this, we describe a hybrid heuristic and sampling-based
planning method, utilizing a unique implementation of sampling-based
model predictive optimization (SBMPO) [19], to motion plan, for
the first time, for a dynamic legged platform on a vertical wall. In
Section II, we detail fundamental challenges for the planning of dy-
namic legged robots. Next, in Section III, we describe TAILS and how
these challenges are manifested on the platform. Our algorithmic ad-
vances to address these challenges are given in Section IV. In Sections V
and VI, we demonstrate the robot maneuvering through a set of difficult
navigation problems. Finally, Section VII concludes this article.

II. NAVIGATION FOR GAITED LEGGED LOCOMOTION

Dynamic gaited locomotion (continuous locomotion that is instanta-
neously unstable but cyclically stable) has been utilized by both biology
and robotics to generate fast efficient motions, but impose numerous
challenges to motion planning. This section defines a set of characteris-
tic challenges many legged systems present toward navigating utilizing
the system’s full host of behaviors. Some of these have been individually
addressed, but this set has yet to be completely addressed.

A. Discrete Control Authority

While moving quasi-statically, legged platforms have the ability, like
traditional vehicles, to instantaneously change their plan or behavior.
However, when moving dynamically, legged platforms generally ex-
perience very brief discrete stance and flight phases (where all the
feet are no longer in contact with the surfaces). The platform can
only significantly adjust its behavior during the short contact period.
Discontinuity in control authority suggests the use of discrete mea-
surement and control for planning. Since legged systems often have
periodic body dynamics and frequent and irregular perturbations when
moving rapidly, state estimation may require special consideration.
Additionally, impacts from discrete foot touchdown events can cause
significant perturbations to body motion.

B. Postural Change

During locomotion, the effective shape of the body is persistently
changing as a result of either bending legs for locomotion, an active
change to the body shape (i.e., crouching down), and/or natural body
oscillations (which tend to be more significant for dynamic motions).
Collision detection is impacted by all of these cases, but active posture
control inherent to legged platforms has the potential to be a boon to
navigation in cluttered environments as demonstrated by cockroaches
using their ability to contort their bodies to fit through narrow gaps [20].
Similar postural changes can be used to improve energy efficiency and
speed, such as choosing a high stepping gait to rapidly traverse shallow
water.

C. Platform Specific Motion Constraints

While all vehicles have some specific motion constraints, such as
how wheeled vehicles generally lack the capability to move later-
ally, legged robots exhibit more heading specific behaviors, including
asymmetries in locomotion based on direction of travel (e.g., going

forward versus backward). For example, due to the direction of their
claws, some cats are capable of climbing up a tree but not down, and
therefore must chose a different behavior to get down, such as jumping.
Additionally, dynamic legged robots have a tendency to experience
significant transient periods when changing directions or switching
locomotion modes.

D. Motion Impediment Versus Foot Placement Constraints

Consider a robot walking across a bridge made up of two parallel,
wooden planks, the robot’s body is freely traversing over the open air
between the planks but the feet may not be placed within the gap.
Contrary to this suppose a robot with waterproof legs is traversing
through shallow water allowing its feet to be submerged but incapable
of submerging its body. These two examples highlight situations where
considering the foot and the body separately (thinking about motion
impediments versus foot placement constraints) could enable planning
in more complex environments. In legged locomotion the propulsion
mechanisms (the feet) are discretely placed and decentralized from
a primarily passive body. The relative motion between these objects
suggests that the feet and body can be treated as separate, but coupled,
systems with distinct constraints.

III. PLATFORM

A. TAILS: Design and Control

TAILS, shown in Fig. 1(a) [18], is a climbing robot, which demon-
strates rapid (40 cm/s) ascension of vertical walls and instantiates the
Full–Goldman climbing dynamics. It does this by linearly retracting
its forefeet through a sinusoidal extension trajectory locked 180◦ out
of phase using a single brushed dc motor. Directional adhesion [21] to
the substrate is achieved through microspine arrays contained within
the forefeet, which facilitate the rapid attachment and detachment
necessary for dynamic climbing. The forefeet are connected to the
body through a spring-loaded sliding wrist mechanism, which mitigates
peaks in the wall reaction forces.

To enable autonomous operation, some adaptations were made to
TAILS. The sliding wrists, previously made of 3-D printed acryloni-
trile butadiene styrene (ABS) plastic, have been replaced with carbon
fiber shafts in order to manage the higher strain seen by strafing and
downward climbing gaits. An Adafruit Bluefruit LE bluetooth module
was added to enable offboard communication with an external path
planning computer. Additionally, a three-cell lithium polymer battery
was added to facilitate untethered locomotion.

Low-level control over the robot’s climbing maneuvers, which pro-
duces the collection of behaviors that the motion planner can select
for navigation, is divided into a feedforward forelimb controller that
maintains a fixed retraction frequency and a kinematic body orienta-
tion controller. The body orientation control (described in more detail
in [18]) prescribes the servo angle of the rear legs to set pitch [which
allows for transposition between body size in plane to out of plane
(OOP)] and roll (which can induce strafing with a constant nonzero
value or downward climbing with a sinusoidal trajectory).

B. Planning Challenges Exhibited by TAILS

While TAILS is the first dynamic legged robot capable of maneu-
vering on a vertical wall, its physical design and control impose several
constraints that make planning navigation difficult. Specific instances
of the four broad classes of challenges outlined in Section II are given
as follows.
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1) Attachment Constraint Challenges: For TAILS’ feet, the
use of directional adhesion imparts both a surface and heading angle
constraint, as attachment can only be achieved on sufficiently rough
substrates and when loaded by gravitational forces. Because of this,
dynamical climbing naturally stabilizes to and requires the feet remain
above the center of mass (COM), which bounds the acceptable heading
angles to a narrow range with the robot oriented essentially upright.

2) Challenge of Heading Angle Constrained Behaviors: With
the fixed body heading angle, maneuverability is achieved using upward
climbing, downward climbing, and diagonal strafing. Upward climbing
has a broad range of velocities with minimal transient behavior, whereas
downward climbing is significantly more sensitive to parameter varia-
tion and has longer initial transient periods, which result in a constrained
range of speeds. Because of the orientation constraints, lateral motion
is constrained to strafing, which progresses upward and laterally (with
upward mobility still dominating).

3) Challenge of Posture and Dynamic Coupling: The effec-
tive size of the robot varies with the speed, climbing behavior, and
prescribed posture. In previous results, it has been found that the body
swing magnitude is much higher at low retraction frequencies and is
attenuated at high frequencies, which causes the effective lateral size of
the body to increase or decrease [18]. A specific example of this is the
increased pitch required for strafing (nearly double vertical climbing),
as shown in the video attachment.

4) State Estimation Challenges: During standard locomotion,
the body uses pendular dynamic swings, which adds complexity to
position tracking. While the average position change of a representative
locomotion template shown in Fig. 1(b) is almost purely vertical, the
instantaneous position of the robot’s body deviates throughout the step
from the prescribed linear path toward a goal.

IV. ALGORITHM

A perfectly well-behaved robot with known and consistent dynamics
will have many options for types of motion planners as there is a clearly
established relationship between the control space and the resulting
motions. SBMPO was chosen as it is particularly adept at complex sit-
uations (such as the holonomic and nonholonomic constraints imposed
by TAILS) by planning directly in the control space using a propagation
relationship to map controls to whole-body velocities, which alleviates
the need for an invertible model.

A. Sampling-Based Model Predictive Optimization

SBMPO uses kinematic, dynamic, or power models of a system to
predict behavior (a model-centric approach) and takes advantage of both
heuristic-based and sampling-based search methods to intelligently
plan an optimal trajectory (within sampling resolution). This algorithm
is based on lifelong-planning A* (LPA*) and shares its guarantees on
completeness and optimality. Upon termination, SBMPO will produce
a sequence of nodes representing a minimal cost trajectory among those
represented by the graph.

The algorithm is comprised of three largely independent components
that encompass all the problem specific components (see Fig. 2): an
optimizer, sampler, and model. The optimization is conducted by using
LPA* [12], which operates on a unique graph of the output space,
generated in SBMPO by inserting samples of the control input into the
prediction model. The model-based components, i.e., the prediction
model, cost function, and heuristic function, allow the algorithm great
flexibility in dealing with the specific constraints of TAILS.

Details of the SBMPO algorithm are found in prior publications
[22], [23]. The general steps of SBMPO, specialized to TAILS, can be
summarized as follows.

Fig. 2. SBMPO is a motion planning paradigm that uses sampling and cost-
to-goal heuristic estimates. Similar to an rapidly-explored random trees (RRT)-
based algorithm, a tree is generated by sampling, allowing direct use of kinematic
and dynamic models to inform the planner.

1) A set {u(k)} of feasible control inputs is generated by sampling.
For TAILS, the vector u is comprised of three elements, offset
(impacting strafing angle), frequency (impacting velocity), and
pitch (impacting stability and velocity).

2) For TAILS, the state x is comprised of the global Cartesian
position. The set of corresponding next states {x(k + 1)} in the
graph is generated by propagating {u(k)} through the prediction
model that, for TAILS, is a deep feedforward network. Each edge
of the directed graph represents the sampled input at a given time
(say k∗) and leads to a node representing the state of the robot at
time k∗ + 1.

3) LPA* is used to search the graph for the optimal route. All
A*-type algorithms leverage a heuristic to rapidly reduce the
computation time needed for optimization; the unique constraints
of TAILS greatly benefited from a specially tailored heuristic
function, as described in Section IV-C.

SBMPO is favorable for motion planning on TAILS as it works with
both linear and nonlinear models, samples in the input (control) space,
and predicts using kinematic or dynamic models. Additionally, SBMPO
plans feasible trajectories directly (not requiring post processing of
a path to generate a trajectory) and efficiently (by using heuristics).
Finally, it has been demonstrated to be effective in numerous applica-
tions on real-world systems with diverse motion constraints, including
underwater vehicles [24], legged robots [25], [26], and spacecraft [27].

B. Learning the Model

Specific adaptation of SBMPO for the TAILS robot required the
creation of an accurate motion prediction model. Although SBMPO can
directly integrate an analytically determined dynamic model, to achieve
efficient computations, it typically utilizes an enhanced kinematic
models (i.e., kinematic models preceded by integrators) and considers
constraints from the robot’s dynamic model [27]–[29].

Dynamic legged robotics incur significant intrastride variability in
COM position. These robots also have nontrivial analytic models of
body motion, where high-fidelity simulations often rely on computa-
tionally expensive propagation techniques. We employed a data-driven
approach to determine this motion prediction model, a deep feedforward
neural network was trained from experimental data.
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Fig. 3. TAILS mapping of directional heuristic scaling. Separate bounding
boxes are used on the forelimbs and the body. The blue region is defined
by the limits of robot strafing, and the traversal cost to any point therein
can be reasonably approximated by Euclidean distance (h). As the angle
increases, the relative estimated cost can no longer be expressed by a simple
Euclidean distance and is necessarily inflated. Arrows show planned paths
at different angles. The robot requires more distance and time to traverse
horizontally due to the fixed heading angle.

In order to address the complex constraints inherent to the TAILS
platform, several adaptations to the software were necessary. Particu-
larly, an accurate motion prediction model needed to be created. In
order to create this, a series of motion-data collection experiments
were conducted to determine the prediction model relating the control
parameters (frequency, offset, and pitch) to upward velocity VZ and
lateral velocity VX . Incrementing through several combinations of the
three control parameters, steady-state behavior was recorded for 180
motion characterization experiments. The details of these experiments
are given in Section V-A.

The network was structured with two hidden layers of 15 and 8 units,
respectively, and was intentionally designed to be noncomplex with the
desire to be adaptable online. This simple structure has the capacity to
learn without needing significant training time, and it can accommodate
additional inputs and outputs without the need for increased computa-
tional resources. The stochastic gradient descent optimizer was used
with a tanh activation function for both hidden layers. Learning rates
were set to 0.005 and batch size was 16.

C. Directional Heuristic and Obstacle Definitions

Heuristic search methods such as A* require some form of approxi-
mation of the cost-to-attain-goal in order to direct the search. Directing
the search allows the algorithm to find an optimal path faster than an
uninformed search method. If properly chosen, SBMPO, by virtue of
the heuristic, is computationally faster than most other forms of graph
search and exploration algorithms [11]. The ideal heuristic function
estimates the cost to goal as closely as possible without exceeding the
actual cost.

Because of the unique motion characteristics of TAILS, a new cost
function and optimistic heuristic function were required. Since TAILS
does not have the capacity to change heading angle and can only move
side to side through diagonal strafing maneuvers, lateral maneuvers are
much more distance costly than others (see Fig. 3).

The heuristic functions must also take into account the relative ease
of vertical mobility and the increased costs of horizontal movement. A
distance-based heuristic was defined based on the Euclidean distance

Fig. 4. Example COM trajectory of the robot (black) is divided into steps
based on critical points of the body swing (cyan circles). The approximated
position (brown) is centered between the critical points in vertical climbing and
set to the lower bound in strafing.

between the COM of TAILS and the goal coordinate. This heuristic
was then inflated using the tuning parameters λ and β (λ = 3 and
β = 8) based on direction of the goal region relative to the robot (shown
in Fig. 3).

Another substantive change that TAILS required was in the treatment
of obstacles. Some obstacles constrain the motion of the whole body,
much like a traditional robot, whereas others only constrain the feet. As
an example, a small void or a narrow crack in the wall does not limit
traversal for the hanging body but it certainly presents a constraint for
placing the feet. The body pitch also impacts the size of the body OOP,
some obstacles require the robot to hug the wall as closely as possible
(in the cases of crawling under an overhang).

We have chosen to treat the robot as two separate objects (shown
in dotted rectangles in Fig. 3) each with their own constraints and
interactions. The feet are treated in a traditional manner with obsta-
cle detection preventing exploration of regions overlapping with the
defined foot area. The body is defined with a 3-D constraint and is
allowed to interpret when an obstacle does not constrain motion.

D. Discrete Control and Dynamic-Based State Estimation

An important consideration when developing models for dynamic
legged robots is the employed gait, a cyclic pattern of leg motions, used
to maneuver and maintain stable locomotion. This type of locomotion
requires a fundamental shift in planning methodology from a time-
based model to that of a stride-based model [5] due to the discrete
nature of the motion. As discussed in Section III-B4, during a single
stride, naturally occurring body oscillations (such as roll, pitch, and
yaw) occur that adds significant volatility to robot state information.
By limiting the data collection and control to a single point during
a stride, it has been found [5] that data relevant for motion planning
are preserved and less experimental data are needed to determine an
accurate motion model.

For TAILS, the pendular nature of the Full–Goldman dynamics
produces yaw oscillations large enough to be leveraged for defining
stride information. In order to track the robot during path execution,
the position is approximated using the critical points of body swing,
as shown in Fig. 4. Steps are determined through a direction change in
the periodic motion of the robot’s yaw angle, with the boundary points
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Fig. 5. Experimental average velocity data from the upward and strafing
parameter sweeps in the vertical and horizontal directions. Examples of rear
servo induced body pitch (e) and body roll offset (f) based on the quasi-static
model are also shown.

TABLE I
PARAMETERS USED IN CLIMBING CHARACTERIZATION PARAMETER SWEEP

Negative roll offset angles correspond to the robot rolled to the right and therefore
strafing to the right, positive body roll is toward the left.

being defined for use in constructing variable sized bounding boxes.
When the robot is using an upward or downward gait, the magnitude of
the body yaw is approximately symmetric about the zero. In this case,
the coordinates of the approximated COM position are chosen to be the
instantaneous vertical position and the horizontal position is averaged
between the position current and prior step. During strafing, due to the
asymmetry of the yaw sinusoid, we chose to use the lower boundary of
the body swing as the approximated position, as this boundary is closer
to the rest position of the body.

V. EXPERIMENTAL SETUP AND RESULTS

A. Network Training

1) Training Data Acquisition: In order to train the neural net-
work, two separate parameter sweeps were run, one each for up-
ward climbing [varying driving frequency and body pitch shown in
Fig. 5(e)] and strafing behaviors [varying driving frequency and roll
angle offset shown in Fig. 5(f)], with the ranges shown in Table I.
The roll offset range was selected to produce both large lateral ve-
locities and lateral velocities for fine positioning, with only a single
pitch of 25◦ tested based on its reliability during initial experimen-
tation. Downward climbing utilized a frequency of 1 Hz to insure
gait robustness. A Nelder–Mead optimization was run to retune the
control parameters from [18] Fig. 5(a)–(d) to account for the robot

modifications. Experimental COM data were recorded using a Vicon
motion capture system at 300 Hz for the entire randomized set of tests,
which were repeated three times and run off of a power supply held at a
constant 15 V.

The resulting average velocities from the parameter sweep are shown
in Fig. 5. The vertical velocity seen in Fig. 5(a) depends, as expected,
primarily on driving frequency. There is some decrease in speed and
increase in variability with higher body pitch. The coupling between
the posture and climbing dynamics is particularly noticeable in the
horizontal velocity. In upward climbing, as shown in Fig. 5(b), the
horizontal velocity shows significant undesired strafing particularly
in the high-frequency gaits with midrange pitches, whereas low and
high pitches held lateral velocities near zero with minor deviation
at all tested frequencies [boxes 1 and 2 in Fig. 5(b)]. Examining
the strafing experiments, with vertical and lateral velocity shown in
Fig. 5(c) and (d), respectively, it can be seen that the offset magnitude
is directly correlated to lateral velocity and therefore the amount of
strafing generated. However, there is significantly more variability in
climbing speed when compared to upward tests, especially at higher
frequencies with positive offset angles. As shown by 3© in Fig. 5,
there is greater deviation in vertical velocity at a frequency of 3.5 Hz,
whereas 4© shows the significant variability in the horizontal velocity
at 4 Hz. While not shown, the vertical velocity in downward gaits
demonstrated significantly more variability than either the upward or
strafing behavior. Due to these factors, a limited subset of gaits were
selected to train the network, as shown in Table I (bolded text). These
gaits allowed a range of vertical velocities from 7.7 to 32.4 cm/s and a
range of average heading angles between 25.9◦ left and 27.4◦ right.

2) Neural Network Results: The network was trained and at-
tained a 98.9% goodness of fit in predicting motions based on the R2

value. In conducting hardware validation of this learned model, it was
seen that additional dynamics were affecting the robot’s motion. In
particular, transition effects from or to a downward climbing command
were noted to occasionally induce significant amounts of error.

B. Path Planning: Methods

In order to test the physical instantiation of the legged climbing
motion planner, a set of obstacle courses were designed for the robot to
navigate. These courses were designed to simulate real-world climbing
environments and are categorized into three sets based on physical
characteristics: 1) climbable substrates, 2) unclimbable obstacles, and
3) narrow gaps. Climbable substrates are surfaces with sufficient as-
perity size and strength to facilitate the directional adhesion property
of microspines, such as cinderblocks, stone aggregate, or in our case,
carpet. Unclimbable obstacles are either substrates with high fragility
or insufficient roughness to allow attachment (which constitute forefoot
obstacles) or discrete surface changes such as extrusions or ledges
(which constitute body obstacles). In these experiments, we only use
forefoot obstacles for simplicity. Narrow gaps are regions of climbable
substrate between close, unclimbable obstacles or exterior obstacles,
which require the robot to change its behavior or morphology to
negotiate.

A set of difficult motion planning problems were chosen to define the
obstacle courses shown in Fig. 6. Due to the mobility constraints of the
climber, the standard narrow gap problem has three permutations based
on orientation: vertical [see Fig. 6(a)], horizontal [see Fig. 6(b)], and
the OOP narrow gap [see Fig. 6(c)]. Additionally, a discrete obstacle is
tested [see Fig. 6(d)], which is representative of a simple unclimbable
obstacle, such as a window in the real world. Each course was manually
entered into the planner and tested at least three times.
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Fig. 6. Results from physical experimentation. The SBPMO desired path (purple) from start node (star) to the goal node (blue circle). The robot’s swing-filtered
body path is shown in black with final positions from three trials in black circles. The average and standard deviation distance from the goal is presented in blue
text. The three versions of the narrow gap problem are shown in (a)–(c) and (d) shows the discrete obstacle. (a) Vertical Gap. (b) Horizontal Gap. (c) OOP Gap.
(d) Box Obstacle.

TABLE II
COMPARISON OF COMPUTATION TIME FOR GAP TRAVERSAL PLANNING

VI. PATH PLANNING: RESULTS AND DISCUSSION

A. Heuristic Comparison

With a naive heuristic of Euclidean distance, the computation time
for a 2-m trajectory to the right costs 188.7 s and explored 192 711
nodes in the planning space. The addition of the custom directional
heuristic function reduced the planning time to 0.75 s with expansions
of only 3197 nodes. The comparison of the heuristics is further shown
in Table II. These results suggest that the directional inflation factor
appears to facilitate rapid computation of trajectories.

B. Path Plans and Execution

The planned paths for each case (solid purple lines in Fig. 6)
were then tested in a feedforward manner on TAILS. A characteristic
experimental path is shown as the dotted lines where the effective paths
were determined using the stride-based COM path filtering described in
Section IV-D. Final robot positions from other trials are shown as black
circles. For the vertical narrow gap [see Fig. 6(a)] that has unclimbable
obstacles outside of a 50 cm wide and 120 cm tall gap, the plan was
able to primarily utilize the consistent upward gaits while avoiding the
obstacles, even though the body swung over the obstacles.

For the horizontal narrow gap [see Fig. 6(b)] that has unclimbable
obstacles around a 40 cm wide and 80 cm tall gap, the plan generated
resulted in frequent lateral strafing to downward climbing motions.
While able to navigate horizontally, these repeated changes cause a
buildup in unmodeled transient effects causing reduced accuracy in
reaching the goal.

For the OOP narrow gap case [see Fig. 6(c)], which has a mesh
screen (outlined by red on the figure) close enough to the wall that
only vertical gaits can be implemented under it and an unclimbable
obstacle at the boundary, the planner was able to choose the correct
gaits to navigate to the goal. The planned path (see video attachment)
strafes as much as possible toward the goal initially, switches to a flat
upward gait to fit through the gap, and then strafes and navigates to the
goal.

Finally, the vertical obstacle [see Fig. 6(d)], which has a 33 cm
wide and 90 cm tall obstacle between the start and goal locations, the
planner ended up choosing to go over the obstacle (which allowed more
room for horizontal strafing maneuvers) before going down to the goal.
This path was able to be completed effectively; however, similar to the
horizontal gap, lateral motions caused variance in the accuracy of the
final position.

With the improved heuristic, unique coupled bounding box obsta-
cle detection, and discrete control, our planner was able to generate
achievable motion plans for each of the cases, although significant
transients impacted the robot’s performance of lateral motions. For the
experimental cases without significant lateral motions [see Fig. 6(a) and
(c)], TAILS finished within 10 cm of the goal, whereas for cases with
significant constrained lateral motion the average distance to goal was
high with standard deviations up to 13 cm. In order to test the planner
over extended horizons, the algorithm was tasked with designing a path
on a real building, as shown in Fig. 7. The resulting path would require
257.8 s to traverse, navigating from near the ground to a perch near one
of the upper windows. This was not tested experimentally due to battery
limits and concerns over the reliability of the attachment mechanism
with the substrate.

The significant unmodeled transients and system drift seen in the
lateral experiments could likely be handled by replanning and trajectory
correction techniques. However, replanning with this unique mobility
will require careful considerations of the same locomotion constraints,
the original planner was required to utilize as well as the ability to
determine if the system can effectively merge to the previously defined
path. If replanning was determined to be necessary, it could be done by
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Fig. 7. Theoretically feasible path generated for climbing on a real-world
building (FSU’s Doak Campbell Stadium).

use of a parallel-SBMPO [30] developed specifically to allow real-time
replanning on rapid motion robots.

VII. CONCLUSION

This article presented a novel planning solution for the unique mobil-
ity challenges exhibited by legged locomotion, in particular the dynamic
climbing behaviors of TAILS. To do this, a set of fundamental planning
challenges for legged locomotion were articulated and related to their
equivalent representation on the TAILS platform. TAILS exhibited
special attachment constraints due to the directional adhesion mech-
anism, a nonholonomic heading angle constraint, coupling between
the robots size and locomotive behavior, and a style of locomotion
that is challenging for state estimation. These were addressed in the
planner through sampling only the valid control inputs, applying a
unique directional heuristic, and by treating the body as a coupled set
of bounding boxes.

Motion plans were developed and tested experimentally for a set
of difficult planning problems adapted for climbing. In our case, the
narrow passage problem has three permutations, the vertical, horizontal,
and OOP directions, each of which pose different planning challenges.
The vertical problem showed that tracking feet and body separately
allowed navigation through very thin gaps, the use of a directional
heuristic allowed efficient computation of a path through the horizontal
gap, and the OOP problem highlighted the planners ability to account
for changes in the bounding box geometry with gait. Together these
demonstrated, for the first time, motion planned for a dynamic legged
robot on a vertical wall.

With these advances, we are one step closer to enabling motion
planners to fully utilize the unique mobility features provided by legged
robotics. Some areas for improvement include more explicit modeling
of the significant transient behavior, increasing the number of potential
locomotion modalities, and improving the collision detection/planning
of the discrete feet. A potential motion planning regime that consid-
ers long-term and short-term patterns of motion (using an long-short
term memory (LSTM) neural network) could likely model both the
persistent steady-state motions as well as the short-duration transients,
whereas replanning may account for variability in the motion. With
further refinement, from both the locomotion development/modeling
and planner development, TAILS should be able to execute planning
maneuvers, untethered, on large-scale real-world buildings.
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