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Dynamic Humanoid Locomotion: A Scalable
Formulation for HZD Gait Optimization
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Abstract—Hybrid zero dynamics (HZD) has emerged as a pop-
ular framework for dynamic walking but has significant imple-
mentation difficulties when applied to the high degrees of freedom
humanoids. The primary impediment is the process of gait design—
it is difficult for optimizers to converge on a viable set of virtual
constraints defining a gait. This paper presents a methodology that
allows for fast and reliable generation of dynamic robotic walking
gaits through the HZD framework, even in the presence of under-
actuation. Specifically, we describe an optimization formulation
that builds upon the novel combination of HZD and direct colloca-
tion methods. Furthermore, achieving a scalable implementation
required developing a defect-variable substitution formulation to
simplify expressions, which ultimately allows us to generate com-
pact analytic Jacobians of the constraints. We experimentally val-
idate our methodology on an underactuated humanoid, DURUS,
a spring-legged machine designed to facilitate energy-economical
walking. We show that the optimization approach, in concert with
the HZD framework, yields dynamic and stable walking gaits in
hardware with a total electrical cost of transport of 1.33.
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I. INTRODUCTION

HUMANOID robots have long held the promise of walking
around in the human world the dynamic way that people

walk. While humans and other biological bipeds can perform
these motions with relative ease, translating such dynamic be-
haviors to three-dimensional (3-D) humanoids is a challenging
task. The rapid development of mechanical and actuation ca-
pabilities of modern robots has already made more dynamic
locomotion possible. The faster and more nimble we demand
these machines to be, the more the robot needs to reason about
its full-order dynamics. It can be helpful to tilt on the edges of its
feet for toe-off or heel-strike maneuvers, exploit soft compliant
linkages for impact reduction, or embrace the underactuated dy-
namics of falling forward to the advantage of locomotion. Due to
the nonlinearities and high degrees of freedom of the multibody
systems, however, planning dynamic motion that reconciles the
full body dynamics of the complex robot model has been pri-
marily prevented by a particular computational bottleneck: gait
synthesis.

A. Related Works

Many existing methods for planning humanoid locomotion
typically use simplified reduced-order models as a basis to mit-
igate the complexity of the full-order gait planning operation.
These approaches plan trajectories for a low-dimensional dy-
namical model that approximates the full-order robot dynamics
by enforcing specific kinematic constraints. For instance, the
arguably most commonly used linear inverted pendulum model
assumption requires a constant center of mass (COM) velocity
in the vertical direction and typically fully actuated systems.
By enforcing the zero moment point (ZMP) criteria, which re-
quires the ZMP position always rest within the support polygon
of the robot feet [1], motion generators can plan the COM po-
sition to ensure fall-free motions [2]–[4], or quickly compute
recovery steps [5], [6]. The whole body motions are then gen-
erated via inverse kinematics or inverse dynamics techniques
by conforming the robot to these analytically tractable models.
The simple, often linear, form of system dynamics expedites
planning the walking gait online to accommodate the changes
in the surrounding environment [7], [8]. The maturity and reli-
ability of the simplified model based planning made it a preva-
lent component in control approaches at the DARPA Robotics
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Challenge [9]–[11]. While these model-simplification meth-
ods have many implementation advantages, they also limit the
flexibility of the walking behaviors, often resulting in a rather
artificial motion when compared to natural human walking. Fur-
thermore, these methods typically require a fully actuated foot
design, a property not present in some of the most agile [12],
robust [13], or efficient [14] bipedal robots.

Recently, the development of advanced optimization tech-
niques permits the use of more complicated dynamic models
as the foundation of gait planning [15], [16]. In particular,
Posa et al. have successfully generated multicontact walking
gaits for a simulated model of the 3-D ATLAS robot using
direct collocation-based constrained whole body dynamic opti-
mization [17]. Similar optimization-based approaches have also
been deployed to generate versatile and dynamic motions by
using the machine’s centroidal dynamics and whole-body con-
tact forces as a foundation for humanoid planning [18], [19].
In those applications, the whole body dynamics are represented
by the 6-D COM dynamics using the augmented linear and an-
gular momentum at the COM due to the ground contact forces,
while joint torques are assumed away as internal forces of the
system [6]. Furthermore, researchers have started to consider
the contact wrench sum (CWS) criteria as the stable balancing
condition instead of the traditional ZMP approach to realize
more versatile locomotion. It requires that the CWS must lie
within the contact wrench cone to keep the dynamic balance of
the robot [20]. The stability criterion is checked by examining
if the CWS is equal to the rate of change in the linear and an-
gular momentum of the robot. This condition is coupled with
the COM dynamics to formulate a nonlinear constrained opti-
mization problem to generate more dynamic gaits for full-order
humanoids [10], [21].

On the other end of the spectrum, the hybrid zero dynamics
(HZD) control framework is designed to mathematically sup-
port stable control of dynamic maneuvers of hybrid dynamical
systems, such as bipedal locomotion [22], [23]. HZD defines the
gait by designing a set of virtual constraints enforced via feed-
back control of the actuated joints. If these virtual constraints
are invariant through impact, all of the stability properties of the
high-dimensional system are captured in a lower-dimensional
representation, termed as the HZD, without making any sim-
plification assumptions of the model. Since its inception, HZD
has built a strong history of success in planar robot implemen-
tations for bipedal walking [24]–[29] and running [30], [31].
Recent work has begun expanding the method into 3-D appli-
cations with highly underactuated robots [32], [33]. Robust and
stable walking gaits were realized using systematic virtual con-
straints optimization approaches to accommodate the unknown
variation of terrain heights and lateral balancing of point-feet
3-D bipeds [34], [35].

B. Problem Statement

This vital task of finding an appropriate set of virtual con-
straints (and parameters thereof) is typically relegated to a non-
linear optimization problem. When robots have as many link-
ages as humanoids, optimizing motions that meet HZD criteria
becomes increasingly tricky for nonlinear programming (NLP)

tools to solve. This has been a significant impediment toward
applying HZD to full humanoid robots, which have far more
degrees of freedom than planar bipeds. In a broader view, this is
where the HZD approach has had to pay the piper for its admis-
sibility of highly dynamic gaits. Traditional HZD gait optimiza-
tion approaches optimize only parameters and boundary state
values, reflecting an instinctive desire to minimize the number of
design variables for the optimization [36], [37]. Intuitively, one
might assume that such minimization of the NLP problem’s di-
mensionality would be an advisable practice for maximizing an
optimization’s speed and reliability. However, this formulation
is prone to many issues, such as nonsmooth approximations of
the constraint Jacobian [38] and the “tail wagging the dog” phe-
nomenon [39], which can introduce pseudominima or merely
cause the algorithm to fail to find a solution. Given the nonlin-
earity of bipedal robot dynamics, it can be difficult to achieve
reliable convergence via this optimization and often relies on
expert users to seed it.

With a goal of removing the limitations of applying the
HZD control framework to high-dimensional humanoids, our
approach unifies virtual constraint optimization with a tech-
nique from the trajectory optimization community: direct col-
location [40], [41]. A direct collocation formulation represents
both the time-varying states and inputs as parameterized curves,
where system dynamics are enforced as equality constraints
(called defect constraints) in a nonlinear program. By eschewing
the need for time-marching integration schemes (as per shoot-
ing methods) in favor of these local defect constraints, open the
possibility of expressing all optimization constraints in closed
form. Fully algebraic constraint expressions allow for symbolic
Jacobians with fast evaluation times and high accuracy, which
is critical for the scalability of the gait optimization. By neces-
sity, this paper also takes care in addressing the scalability of
constraint expression sizes, which can quickly explode to in-
tractable proportions. Specifically, we present our formulae by
systematically introducing defect variables into the constraints
that avoid symbolically verbose operations, keeping the result-
ing expressions simple. Furthermore, by carefully indexing the
optimization variables and constraints, we further simplify the
Jacobian matrix to have a banded structure, enabling efficient
evaluation and use by standard large-scale NLP solvers. All such
components of this process were crucial in engineering fast and
reliable optimizations that synthesize HZD gaits for humanoid
robots.

As validation of this approach, we use this computationally
scalable framework to DURUS, a 23-DOF spring-legged hu-
manoid robot. DURUS is designed for energy-economical lo-
comotion, including soft distal springs at the ankles to absorb
hard impacts. This significant non-joint-collocated compliance
serves as an appropriate platform for testing dynamic gaits. To
show the flexibility of the synthesis process (illustrated in Fig. 1),
we present a set of hardware experiments demonstrating planar
multicontact “heel-toe” walking and 3-D flat-footed dynamic
locomotion on DURUS. We achieved sustained 3-D walking
that continues for hours with a single battery pack without
falling. We further report this energy-optimized gait as having
high-energy economy in the experiment (COT: 1.33), demon-
strated that we can successfully control the robot hardware while
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Fig. 1. Illustration of the process used to generate dynamic 3-D walking with DURUS. This direct collocation framework parses a multibody model of the robot
and a set of virtual constraints into a large and sparse NLP with upwards of 10 000 design variables and constraints. Large-scale algorithms typically solve this
NLP in under 10 min, thereby optimizing a dynamic gait for the 3-D humanoid that exploits the full body dynamics of the machine, despite underactuation.

still taking advantage of its energy-conscious underactuated
design.

A preliminary presentation of this paper was outlined in [42],
but with a less-complete description of the formulation and
fewer validating experiments. This manuscript elaborates on the
total generalized framework, as well as more specific formula-
tion that allow for fast execution (such as indexing methods).
This paper further supports the scalability and generality of the
approach through application to additional multidomain bipedal
locomotion cases (e.g., heel-toe walking).

The structure of this paper is as follows. Section II reviews
the formal definition of the general multidomain hybrid con-
trol system, and Section III introduces the design of virtual
constraints for bipedal locomotion. In Section IV, we propose
a virtual constraints optimization framework based on direct
collocation methods. Section V uses the proposed framework to
design two different types of walking for DURUS and generates
energy-efficient gaits for each case respectively. Experimental
results of two different walking gaits on DURUS are presented
in Section VI, including sustained 3-D walking, followed by the
discussion and conclusion in Section VII.

II. BIPEDAL LOCOMOTION AS HYBRID SYSTEMS

Bipedal locomotion consists of a collection of continuous
phases (or domains) with discrete events triggering transitions
between these continuous phases; formally modeling this inter-
play of continuous and discrete dynamics results in a multido-
main hybrid system model.

A. Formal Definition of Multidomain Hybrid Systems

During a steady-state walking gait, the transitions between
different phases become ordered and periodic; this motivates
the use of a multidomain hybrid system with a predetermined
ordering of domains as represented by a directed cycle, i.e., a
cyclic directed graph.

Fig. 2. Typical periodic human walking pattern can be represented as a di-
rected cycle of four discrete domains with different contact conditions (red
circles in the figure).

Definition 1: A directed cycle is a directed graph Γ =
(V,E), with V = {v1 , v2 , . . . , vnp } a set of vertices and E =
{e1 = (v1 → v2), e2 = (v2 → v3), . . . , enp = (vnp → v1)} a
set of edges. Let sor : E → V and tar : E → V be the maps
that determine the source vertex and target vertex of an edge,
respectively. In other words, any e ∈ E can be represents as
e = {sor(e) → tar(e)}. For a directed cycle, sor and tar are
one-to-one and onto. Hence, their inverse maps sor−1 : V → E
and tar−1 : V → E exist and are well defined.

Example 1: In Fig. 2 , a four-domain directed cycle illus-
trates the domain structure of a typical human walking gait
pattern that consists of four discrete phases depending on dif-
ferent contact conditions [43]. This directed cycle Γ = (V,E)
consists of four vertices and four edges:

V = {ts, tl, hl, hs}
E = {ts → tl, tl → hl, hl → hs, hs → ts}.

Definition 2: A hybrid control system is a tuple

H C = (Γ,D,U , S,Δ, FG) (1)

where Γ = {V,E} is a directed cycle, D = {Dv}v∈V is a set
of admissible domains, U is a set of admissible control inputs,
S = {Se}e∈E is a set of guards or switching surfaces, Δ =
{Δe}e∈E is a set of reset maps that dictate the discrete transitions
triggered atSe , andFG = {FGv}v∈V is a set of control systems



HEREID et al.: DYNAMIC HUMANOID LOCOMOTION: A SCALABLE FORMULATION FOR HZD GAIT OPTIMIZATION 373

that determine the continuous dynamics of the system on a
domain Dv .

Utilizing the formal definition of multidomain hybrid sys-
tems, we have the framework necessary to discuss how the
Lagrangian and contact constraints—such as foot contacts with
the ground—of the mechanical system of a bipedal robot are
used to determine each element of the hybrid system model.

B. Hybrid System Models for Bipedal Locomotion

In this section, we review the mathematical formulation of
each element of the hybrid control system model for dynamic
bipedal locomotion based on a generalized robot model. The
multibody system of a robot is often modeled as a kinematic
tree of rigid links. Motivated by the desire to consider robots
in a generalized position, i.e., not impose assumptions on con-
tact constraints, we use the floating base coordinates of a robot
(see [44]). Let R0 is a fixed inertial frame and Rb is a refer-
ence frame rigidly attached to the base link of the robot, then
the Cartesian position pb ∈ R3 of the origin and the orientation
φb ∈ SO(3) ofRb with respect toR0 , respectively, compose the
floating base coordinates of the robot. Let qr ∈ Qr be the joint
coordinates of a robot, the floating-base generalized coordinates
can be defined as

q = (pb, φb , qr ) ∈ Q = R3 × SO(3) ×Qr ⊆ Rn (2)

where n is the total degrees of freedom of the system.
Domains: A specific admissible domain is determined by the

associated contact conditions. In this paper, we use holonomic
constraints to model the robot’s physical contacts with the ex-
ternal environment. With Cv as an indexing set of all holonomic
constraints defined on Dv , we state the holonomic constraints
of this domain as

ηv = {ηc}c∈Cv ≡ constant

and the associated kinematic constraints as Jv (q)q̇ = 0, where
Jv (q) is the Jacobian matrix of ηv , i.e., Jv (q) = ∂ηv

∂ q . It was
shown in [45] and [44] that the foot contact with the ground is
unilateral in essence. Hence, a certain set of conditions should
be imposed on the contact wrenches, λv , in order to satisfy the
holonomic constraints assumption. Specifically, we state these
conditions as

νv (q)λv (q, q̇, u) ≥ 0 (3)

where νv (q) depends on the geometric parameters of the con-
tacts, such as the size of the robot feet and the friction coefficient
with the ground. It can be noted that here we explicitly show the
dependence of contact wrenches on the system states and con-
trol inputs. For some domains, additional unilateral constraints
related to the robot postures, denoted by hv (q) > 0, should also
be considered. Combining (3) and unilateral constraints together
yields the domain of admissibility

Dv = {(q, q̇, u) ∈ TQ× U|Av (q, q̇, u) ≥ 0} (4)

Fig. 3. Geometric illustration of the flat foot ground contact.

for v ∈ V , where

Av (q, q̇, u) =

[
νv (q)λv (q, q̇, u)

hv (q)

]
≥ 0 (5)

defines the boundary condition of the domain manifold.
Example 2: During the single support domain of a typical

flat-footed walking gait, the stance foot should lie flat on the
ground. Thus, the associated holonomic constraints can be de-
fined as the Cartesian position of a fixed point p, as shown in
Fig. 3, on the stance foot link and the orientation of the stance
foot link is constant. The corresponding contact wrenches con-
sist of three constraint forces, (λf xc , λf yc , λf zc ), and three con-
straint moments, (λmx

c , λmy
c , λmz

c ), respectively. Conditions on
contact wrenches include:

1) the ground reaction force should not be negative;
2) feet should not slide on the ground;
3) the robot should not roll over the edge of the feet.
These conditions can be stated as

λf zc ≥ 0 (6)√
(λf xc )2 + (λf yc )2 < μcλ

f z
c , λmz

c < γcλ
f z
c (7)

−laλf zc < λmx
c < lbλ

f z
c ,−Lbλf zc < λmy

c < Laλ
f z
c (8)

where μc and γc are the linear and torsional friction coefficient,
respectively. The inequalities in (8) is also referred as the ZMP
conditions [1], [44]. In addition, we also require that the height
of the swing foot should be positive, so that the swing foot is
always above the ground. This can be formulated as a unilateral
constraint: pznsf(q) ≥ 0. These unilateral constraints on contact
wrenches and robot kinematics form the domain of admissibility
condition in (5).

Continuous Dynamics: With the mass, inertia, and length
properties of each link of the robot, the equation of motion
of the constrained dynamical system for a given domain Dv

is determined by the classical Euler–Lagrange equation and
holonomic constraints of the domain [46]

D(q)q̈ +H(q, q̇) = Bvu+ JTv (q)λv (9)

Jv (q)q̈ + J̇v (q, q̇)q̇ = 0 (10)

whereD(q) is the inertia matrix,H(q, q̇) = C(q, q̇)q̇ +G(q) is
the vector containing the Coriolis and gravity term, Bv is the
actuator distribution matrix. The wrenches λv can be determined
by solving (9) and (10) simultaneously [44]. Substituting the
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closed-form solution of λv into (9) yields the affine control
system of the form

ẋ = fv (x) + gv (x)u (11)

with x = (q, q̇) ∈ X = TQ being the state of the system.
Guards: A guard Se is a proper subset of the boundary of the

domain, Dsor(e) , determined by an edge condition associated
with the transition fromDsor(e) to the following domain,Dtar(e) .
LetHe(q, q̇, u) be an appropriate element from the vector in (5)
corresponding to a transition, then the guard is defined as

Se = {(q, q̇, u) ∈ Dsor(e) |He(·) = 0, Ḣe(·) < 0}. (12)

Discrete Dynamics: When a guard is reached, it indicates a
change of the contact. For bipedal locomotion, it could be when
new contacts are established, e.g., the heel or sole of the swing
foot hits the ground, or when existing contacts break, e.g., the
lift-off event of the swing foot. As a consequence, the states of
the robot will undergo a discrete change. This discrete dynamics
of the system can be captured as a reset map that projects the
current states of the system, at the current phase’s guard, to
the following domain. In particular, we model the robot and
guard as rigid bodies. Hence, given the preimpact states (q−e , q̇

−
e )

on the guard, the postimpact states (q+
e , q̇

+
e ) are computed by

assuming a perfectly plastic impact (if an impact occurs) [47],
[48]. Following the presentation in [44], the robot configuration
is invariant through impact, i.e., q+

e = q−e . Because the impact
occurs instantaneously due to the rigid body assumption, the
generalized momentum of the system should be conserved, i.e.,

D(q+
e )(q̇+

e − q̇−e ) = JTtar(e)(q
+
e )δFtar(e) (13)

where δFtar(e) is a vector of the intensity of impulsive contact
wrenches over the infinitesimal impact event. This plastic im-
pact equation together with the holonomic constraints of the
subsequent domain determines the discrete jump of the joint
velocities, represented as q̇+

e = Δq̇ (q)q̇−e . Therefore, the reset
map of a given guard can be written as

(q+
e , q̇

+
e ) = Δe(q−e , q̇

−
e ) :=

[
Δq (q−e )

Δq̇ (q)q̇−e

]
(14)

where Δq (q−e ) represents the change in the robot configuration,
which is often an identity map (see Remark 1).

Remark 1: In the study of symmetric walking gaits, a bipedal
robot is often modeled regarding “stance” and “nonstance” leg
angles instead of physical “left” and “right” leg angles to reduce
the number of discrete domains. In these cases, the robot config-
uration needs to be relabeled if there is a change in the “stance”
and “nonstance” leg, i.e., when the “nonstance” leg becomes the
“stance” leg. As a result, Δq (q−e ) is no longer an identity map.
This relabeling process can be denoted as

Δq (q−e ) := R(q−e ) (15)

where ∂R(q)
∂q has full rank. It is important to note that this map

is a linear map in many applications [49], [50].

III. VIRTUAL CONSTRAINTS BASED FEEDBACK CONTROL

In this section, virtual constraints are introduced as a means to
synthesize feedback controllers that realize dynamic locomotion
of a walking robot. Enforcing virtual constraints results in a
reduced dimensional representation of the full order system that
captures the natural dynamics of the robot.

A. Virtual Constraints

Analogous to holonomic constraints, virtual constraints (also
termed outputs in the control literature [49], [51]) are defined
as a set of functions that modulate the behavior of a robot in
order to achieve particular desired trajectories via state-based
feedback controllers. The term “virtual” comes from the fact
that these constraints are enforced via joint actuators instead of
mechanical constraints.

Definition 3: Given v ∈ V , yav = (ya1,v , y
a
2,v ) is an ad-

missible combination of robot outputs consisting of
velocity-modulating outputs, ya1,v : Q → Rn1 , v , and position-
modulating outputs, ya2,v : Q → Rn2 , v . With mv as the total
number of admissible controls and nv as the total number of
holonomic constraints, the total number of position-modulating
outputs, n2,v , is determined by

n2,v =
{
mv − n1,v , if mv ≤ n− nv
n− nv − n1,v , if mv > n− nv .

(16)

Let Ov be an indexing set for yav whereby yav (q) = {ya1,o(q),
ya2,o(q)}o∈Ov

. A output combination is independent if the
Jacobian of yav (q) has a full rank.

Remark 2: The idea of the velocity modulating output orig-
inates from the study of human-inspired control. By analyzing
human locomotion data, Ames proposed that the forward hip ve-
locity appear to be an approximately constant value [52]. Hence,
if there are enough admissible actuators present in the bipedal
robot, the forward velocity can be controlled via feedback con-
trollers as a velocity-modulating output. The admissible con-
dition is determined by whether or not the forward velocity of
the hip is fully controllable. For example, we define the forward
velocity as the velocity-modulating output only when the stance
foot is flat on the ground, and both the ankle and knee joints are
actuated.

Given a group of actual robot outputs as in Definition 3, the
virtual constraints are defined as the difference between the
actual and desired outputs of the robot

y1,v (q, q̇, αv ) = ẏa1,v (q, q̇) − yd1,v (τ(q), αv ) (17)

y2,v (q, αv ) = ya2,v (q) − yd2,v (τ(q), αv ) (18)

for v ∈ V , where y1,v and y2,v are relative degree 1 and rela-
tive degree 2 by definition, respectively, and αv := {αo}o∈Ov

is the set of parameters for the desired outputs. Although the
desired output can be represented in various function forms, we
typically define desired outputs as follows: the desired velocity-
modulating output (if present) is assumed to be a constant, and
the desired position-modulating outputs are given in term of
Bézier polynomials. Furthermore, the desired outputs often are
defined as functions of a state-based parameterization of time
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τ(q) so as to create an autonomous control system, which is
more robust than nonautonomous systems [23]. τ(q) must be
a strictly monotonic (increasing or decreasing) function over a
specific duration of time, such as a step cycle.

B. Partial Hybrid Zero Dynamics (PHZD)

With the goal of driving the virtual constraints yv =
(y1,v , y2,v ) → 0 exponentially, consider the feedback lineariza-
tion control law with a control gain ε > 0

uεv = −A−1
v

([
Lfv y1,v

L2
fv
y2,v

]
+

[
εy1,v

2εẏ2,v + ε2y2,v

])
(19)

where Lf and L2
f are the first- and second-order Lie derivatives

and Av is the decoupling matrix that is invertible due to the
specific choice of virtual constraints [49]. Applying this control
law yields linear output dynamics of the form

ẏ1,v = −εy1,v (20)

ÿ2,v = −2εẏ2,v − ε2y2,v (21)

which are exponentially attractive to the origin, i.e., yv → 0.
Applying the feedback controllers given in (19) in each domain
of the hybrid control system (1) yields a hybrid system model,
given as

H = (Γ,DX , SX ,Δ, FX ) (22)

where DX = {DX
v }v∈V is a set of admissible domains with

DX
v ⊆ X a smooth submanifold of the state space X only,

SX = {SXe }e∈E is a set of guards with SXe ⊂ DX
v , and FX =

{FX
v }v∈V is a set of restricted dynamical systems defined on

DX
v , i.e., ẋ = fXv (x) with x ∈ DX

v . The control law in (19)
renders the reduced-dimensional zero dynamics submanifold

Zv = {(q, q̇) ∈ DX
v |y1,v = 0, y2,v = 0, ẏ2,v = 0} (23)

invariant during the continuous domains [49]. However, it is
not necessarily invariant through discrete dynamics due to im-
pacts. Moreover, if the reset map involves a plastic impact, it
is impossible to guarantee the velocity-modulating output to be
constant due to the change in velocities caused by the impact.
In this case, we instead consider the partial zero dynamics man-
ifold on which only the position-modulating outputs have zero
errors, i.e.,

PZv = {(q, q̇) ∈ DX
v |y2,v = 0, ẏ2,v = 0}. (24)

If there exists a set of parameters α = {αv}v∈V so that for any
edge e ∈ E, the submanifold PZv is impact invariant if

Δe(x) ∈ PZtar(e) ∀x ∈ SXe ∩ PZsor(e) . (25)

A manifold PZ =
⋃
v∈V PZv is called hybrid invariant if it is

invariant over all domains of continuous dynamics and impact
invariant through all discrete dynamics, i.e., solutions that start
in PZ remain in PZ , even after impulse effects (see Fig. 4).
If a feedback control law renders PZ hybrid invariant, then we
say that the multidomain hybrid control system has a partial
HZD (PHZD). By enforcing PHZD, the full order dynamics of
the hybrid system can be represented as a reduced-dimension

Fig. 4. Illustration of the PHZD periodic orbit in the case of a two-domain
hybrid system.

dynamical system that is independent of control inputs. More-
over, the stability properties of periodic solutions of the full
order dynamics can also be determined by this low-dimensional
representation [53].

Remark 3: The PHZD is not a mandatory requirement if a
velocity-regulating output is not present in the design. Further-
more, one could still consider the HZD if the desired velocity
output is not a constant. However, introducing the partial zero
dynamics not only allows us to command a constant desired
velocity, but also the evolution of y1 is now solely determined
via the linear output dynamics given in (20) and is independent
of τ . This allows for a driving element that pushes the robot
forward regardless of the state of the phase variable. Hence, in
the remainder of this paper, we will focus our discussion only
on the PHZD.

Designing a dynamic walking gait for humanoids using vir-
tual constraints based feedback controllers requires determining
a valid set of gait parameters α that satisfies the PHZD require-
ments and the robot’s physical constraints. Finding such param-
eters is typically regulated as a nonlinear optimization problem.
Existing approaches often use direct shooting methods, such as
single shooting [23], [54] or multiple shooting [55], to solve
such an optimization problem. However, these approaches be-
come increasingly intractable for 3-D humanoids or highly un-
deractuated robots. The reasons are twofold: the HZD becomes
increasingly unstable for robots with high degrees of underac-
tuation and obtaining equations of motion for the reduced di-
mensional system explicitly is computationally challenging for
systems with as many linkages as humanoids. Consequently, the
direct shooting methods run into scalability issues with increas-
ing degrees of freedom robots due to the necessity of explicit
forward integration of the zero dynamics.

IV. DIRECT COLLOCATION BASED HZD OPTIMIZATION

In this section, we present the core contribution of the paper—
a novel scalable optimization formulation of multidomain hu-
manoid locomotion based on the direct collocation method.
The direct collocation method works by replacing the explicit
forward integration of the dynamical systems with a series of de-
fect constraints via implicit Runge–Kutta methods. The usage
of implicit Runge–Kutta methods, which have better conver-
gence properties for unstable systems than explicit methods,
enables the direct collocation method to optimize dynamic gaits
for highly underactuated robots. Furthermore, we tackle the
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scalability issue by decoupling complicated constraints into sev-
eral simpler constraints by introducing defect variables, which
are supplementary decision variables that could have been com-
puted in closed-form solutions.

A. Constrained Dynamics

An important feature of direct collocation method is that it
allows us for expressing the system dynamics in an implicit
differential algebraic equations (DAEs) form. This motivates
us to use the full-order constrained dynamics on PHZD mani-
folds in the optimization. Recall that the PHZD represents a re-
stricted submanifold on which both holonomic constraints and
virtual constraints vanish. Based on the previous discussions in
Sections II and III, we can state the constrained dynamics as an
index-1 DAEs problem

Fv (·) :=

⎡
⎢⎢⎢⎢⎣
D(q)q̈ +H(q, q̇) −Bvu− JTv (q)λv

Jv (q)q̈ + J̇v (q, q̇)q̇

ẏ1,v + εy1,v

ÿ2,v + 2εẏ2,v + ε2y2,v ,

⎤
⎥⎥⎥⎥⎦ = 0 (26)

subject to the initial value conditions at t = t0 , given as

ηv (q(t0)) = η̄v , Jv (q(t0))q̇(t0) = 0 (27)

y2,v (q(t0), αv ) = 0, ẏ2,v (q(t0), q̇(t0), αv ) = 0 (28)

where η̄v is a vector of constants determined by the contact
conditions.

Lemma 1: Supposing that φv (t) ⊂ X is a solution of the
DAE system, Fv (·) = 0, subject to initial conditions specified
in (27) and (28), then φv (t) ⊂ PZv . That is, φv (t) is also a
solution on the PHZD.

Proof: The result follows immediately from the construc-
tion of the constrained dynamics. By assumption, φv (t0) =
[q(t0), q̇(t0)]T satisfies the initial conditions in (27). Further-
more, the second equation in (26) guarantees that ηv (q) ≡ η̄v
along any solution of (26). Let Xv be the canonical projection
of Dv onto the state space X , then φv (t) ⊂ Xv . Similarly, the
third and fourth equations in (26) stabilize the virtual constraints
exponentially to the origin. Considering that y2,v (t0) = 0 and
ẏ2,v (0) = 0, therefore, we have

y2,v (q(t), αv ) = 0

ẏ2,v (q(t), q̇(t), αv ) = 0

for all t0 ≤ t ≤ tf until the solution φv (t) reaches a guard, i.e.,
φv (tf ) ∈ Xv ∩ Ssor−1 (v ) . By the definition of the PHZD in (24),
we conclude that φv (t) ⊂ PZv . �

Remark 4: The implicit DAEs given in (26) yields a equiva-
lent representation of the reduced dimensional robot dynamics
on the PHZD manifold. Instead of computing the reduced order
dynamics in terms of zero dynamics coordinates as in traditional
HZD literature [23], [49], we express the restricted dynamics in
the form of implicit DAEs. From a technical perspective, com-
puting the symbolic expressions of Fv (·) would be easier and
less time consuming compared to the traditional zero dynamics
equations (cf., Eq. (63) in [49]). As we shown in later sections,

Fig. 5. Illustration of defect constraints and node distribution.

fully utilizing this fact in the direct collocation optimization is
the key to unifying the HZD and direct collocation methods.

B. Modified Direct Collocation Optimization

In this section, we modify the classic Hermite–Simpson col-
location scheme so that the system dynamics can be imposed as
implicit forms, e.g., (26). Specifically, we first discretize each
continuous domain into Nv intervals, then introduce q(i) , q̇(i) ,
q̈(i) , u(i) , and λ

(i)
v as NLP decision variables at each discrete

node. We denote qv , q̇v , q̈v , uv , and λv as collections of vari-
ables defined on all nodes, and α∗

v as the virtual constraint
parameters that need to be determined for a specific domain Dv .
Assuming TI ,v > 0 is the time at which the system reaches the
guard associated with the given domain, the time discretization
is defined as

0 = t0 < t1 < t2 < . . . < tNv
= TI ,v (29)

withNv = 2(Nc
v − 1), where the even points are called cardinal

nodes and the odd points are called interior nodes (see Fig. 5).
The total number of cardinal nodes specified per domain, Nc

v ,
must be greater than 1, and an interior point (IP) must be placed
at the center of two adjacent cardinal nodes.

Remark 5: In the classic Hermite–Simpson method, the
states at interior nodes and the slope ẋ at cardinal nodes are
computed in closed form and are not considered as variables.
For a high-dimensional dynamical system, particularly when
the system dynamics cannot be determined explicitly, such for-
mulation will harm the convergence of the overall optimization
problem. Moreover, u and λv can be also computed in closed
form in the HZD framework, but it requires inverting matrices
such asD(q) and Av (q). In our formulation, we introduce them
all as defect variables, so that the collocation constraints and sys-
tem dynamics will be decoupled and complicated closed-form
calculations can be avoided.

Collocation Constraints: Given the discretization, we first
use Hermite interpolation polynomials to approximate the solu-
tion within two neighboring cardinal nodes using the estimated
states x(i) = (q(i) , q̇(i)) and slopes ẋ(i) = (q̇(i) , q̈(i)). The fol-
lowing two defect constraints at each interior node, i, must
be satisfied to ensure that the polynomials are indeed accurate
approximations of the dynamical system solutions [39], [40]:
1) the difference between x(i) and the interpolated states x̄(i)

from the approximated polynomial (δ(i) in Fig. 5), and 2) the
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difference between ẋ(i) and the slope of the polynomial (ζ(i) in
Fig. 5). These constraints can be stated as1

ζv (qv , q̇v , q̈v ) :=
[
ζ(1) ζ(3) · · · , ζ(Nv −1)

]T = 0 (30)

δv (qv , q̇v , q̈v ) :=
[
δ(1) δ(3) · · · , δ(Nv −1)

]T = 0 (31)

for each v ∈ V , where

ζ(i) := ẋ(i) − 3
2Δt(i)

(x(i+1) − x(i−1)) +
1
4
(ẋ(i−1) + ẋ(i+1))

δ(i) := x(i) − 1
2
(x(i+1) + x(i−1)) − Δt(i)

8
(ẋ(i−1) − ẋ(i+1))

with Δt(i) = ti+1 − ti−1 for i ∈ {1, 3, 5, . . . , Nv − 1}.
PHZD Constraints: To ensure that the approximated so-

lution is indeed a solution of the restricted PHZD of the
robot, we enforce that the dynamic equations in (26) and the
domain of admissibility conditions as in (4) at all nodes. Let
F v (qv , q̇v , q̈v ,uv ,λv , α

∗
v ) and Av (qv , q̇v ,λv ) be the vectors

that are obtained by stacking Fv (q(i) , q̇(i) , q̈(i) , u(i) , λ
(i)
v , α∗

v )
and Av (q(i) , q̇(i) , λ

(i)
v ) for all i ∈ [0, Nv ], respectively, these

constraints can be stated as

F v (qv , q̇v , q̈v ,uv ,λv , α
∗
v ) = 0 (32)

Av (qv , q̇v ,λv ) ≥ 0. (33)

for all v ∈ V . Moreover, the initial value conditions in (27) and
(28) should also be satisfied at the first node i = 0 of each do-
main. In addition, it must be guaranteed that the system reaches
the associated guard of a domain v ∈ V at TI ,v . This is equiv-
alent to imposing the guard condition in (12) at the last node
of each domain. While the continuous dynamics is satisfied by
collocation constraints, the discrete dynamics given in (42) can
be directly imposed as an equality constraint that connects the
solutions of two neighboring domains. Because this constraint
involves variables defined on two different domains, we denote
�(0v + ) as a variable defined on the first node of the next domain
of Dv .

Let Z = {TI ,v , qv , q̇v , q̈v ,uv ,λv , α
∗
v , η̄v}v∈V be the set of

NLP variables, the direct collocation based HZD optimization
problem can be stated as

Z ∗ = argmin
Z

∑
v∈V

Jv (·)

s.t ζv (qv , q̇v , q̈v ) = 0 (34a)

δv (qv , q̇v , q̈v ) = 0 (34b)

F v (qv , q̇v , q̈v ,uv ,λv , α
∗
v ) = 0 (34c)

Av (qv , q̇v ,λv ) ≥ 0 (34d)

He(q(Nv ) , q̇(Nv ) , λ(Nv )
v ) = 0 (34e)

Ḣe(q(Nv ) , q̇(Nv ) , λ(Nv )
v ) < 0 (34f)

Δe(q(Nv ) , q̇(Nv )) − (q(0v + ) , q̇(0v + )) = 0 (34g)

1An animated version of the illustration of direct collocation formulations
can be found in https://youtu.be/aL-B2eIoCK4

ηv (q(0)) − η̄v = 0 (34h)

Jv (q(0))q̇(0) = 0 (34i)

y2,v (q(0) , αv ) = 0 (34j)

ẏ2,v (q(0) , q̇(0) , α∗
v ) = 0 (34k)

for all v ∈ V and e = sor−1(v) ∈ E, where Jv (·) is a cost func-
tion. In particular, physical constraints (such as torque limits,
joint velocity, and angle limits, etc.) can be imposed directly as
the limiting values of corresponding variables.

A cost function that consists of function integrals, which
is quite common in trajectory optimization problems, can be
approximated with Simpson’s quadrature rule [56]. Let L(·)
be a function that needs to be integrated over the continuous
domains, which is also termed as a running cost, we have∫ tfv

t0v

Lv (·)dt =
Nv∑
i=0

wiLv (·) (35)

where wi is the integration weight of node i, which can be
determined by the Simpson’s quadrature rule. Specifically,wi =
1
6 Δt(i+1) if i = 0 or i = Nv , wi = 2

3 Δt(i) if i is an interior
node, and wi = 1

3 (Δt(i−1) + Δt(i+1)) if i is a cardinal node
other than 0 and Nv . With the quadrature approximation, the
total cost function can be computed as

Jv (·) = Ev (·) +
Nv∑
i=0

wiLv (·) (36)

where Ev is a terminal cost that does not requires integration.
Remark 6: It is straightforward to verify from (26) that the

constraint wrenches λ
(i)
v are determined (implicitly) via the sec-

ond equation, and the control inputs u(i) are determined (also
implicitly) from the linear output dynamics stated in the third
and fourth equations in (26). By definition, the control inputs
determined from the optimization are equal to the feedback
controllers defined in (19), which provides us with a set of pa-
rameters α = {αv}v∈V that represent the optimal gait behavior
for the bipedal robot, rather than open-loop control inputs that
result in optimal trajectories. Hence, the control inputs from the
trajectory optimization problem are compatible with the feed-
back control law defined on the PHZD manifold. This feature
is different from classic trajectory optimization formulations, in
which the control inputs are often assumed to be open-loop and
piecewise constant or linear.

Remark 7: The reset map constraint in (34g) can be simpli-
fied with the introduction of defect variable δFv . Specifically,
these constraints can be imposed for all v ∈ V as

q(0v + ) −R(q(Nv )) = 0 (37)

D(q(0v + ))(q̇(0v + ) −R(q̇(Nv ))) − JTv+(q(0v + ))δFv = 0. (38)

Remark 8: In particular, we include the constant vectors η̄v
as decision variables for the (desired) holonomic constraint val-
ues so that they can be determined by the optimization. These
constants often include the gait properties such as the step length
and width. By including η̄v as optimization variables, we have
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direct control over these properties in the optimization. More-
over, if specific holonomic constraints are defined on multiple
domains, then they should be consistent over the entire gait cy-
cle. Similarly, if some virtual constraints are defined on multiple
domains, we often require that they use the same parameter set
αo to have smoother desired outputs. Hence, we impose that

αv [o] − αv+[o] = 0 ∀o ∈ (Ov ∩ Ov+) (39)

η̄v [c] − η̄v+[c] = 0 ∀c ∈ (Cv ∩ Cv+) (40)

for all vertices except the last one, i.e., v ∈ V \{vnp }. In partic-
ular, o and c represent the indexing of the virtual and holonomic
constraints defined on the particular domains.

With the direct collocation formulation of HZD gait optimiza-
tion, we can now state the main result of the paper.

Theorem 1: Solving the constrained NLP problem in (34)
yields a set of optimal parameters α∗ and a hybrid invariant
periodic flow φ∗(t) such that φ∗(t) ⊂ PZα∗ .

Proof: Let φ̃∗v (t) be a piecewise continuous polynomial de-
termined by the solution {T ∗

I ,v , q
∗
v , q̇

∗
v , q̈

∗
v} from the optimiza-

tion (34) for each domain Dv . Then from (34a)–(34c), φ̃∗v (t)
is a approximated solution of the continuous constrained dy-
namics (26) given relatively small time steps, and by the expo-
nential convergence of collocation methods [57], φ̃∗v (t) ⊂ Xv

can be considered as the exact solution, φ∗(t) ⊂ Xv , of (26), as
Nv → ∞ for each v ∈ V . Furthermore, from (34e) and (34f),
we can conclude that

(q(Nv ) , q̇(Nv )) ∈ Se ∩ Xv (41)

and from (34g), the solutions of two adjacent continuous do-
mains are connected via the reset map Δe , i.e.,

φ∗v+(0) = Δe(q(Nv ) , q̇(Nv )). (42)

Both Fv and Δe are C1 continuous by definition, therefore,
there exists an unique solution for some given initial condition
x(0). Moreover, with the reset map constraints, we have

φ∗(TI ) = Δe(q
(Nv n p

) , q̇(Nv n p
)) = (q(0v 1 ) , q̇(0v 1 )) = φ∗(0).

Hence, φ∗(t) is periodic due to the uniqueness of the solution.
In particular, TI =

∑
v∈V TI ,v is the period of the periodic so-

lution. The hybrid invariant of the periodic solution can be ver-
ified by constraints (34i)–(34k). In other words, φ∗(t) ⊂ PZv

by Lemma 1, and (q(Nv ) , q̇(Nv )) ∈ Se ∩ PZv . Moreover from
(34g), we could easily conclude that (42) holds for each discrete
transition. By Lemma 1, φv+(0) ∈ PZv+ . Therefore,

Δe(q(Nv ) , q̇(Nv )) ∈ PZv+ (43)

for all v ∈ V . This shows that the solution is impact invariant
over all discrete dynamics. We also know that the solution is
forward invariant under the feedback controller u∗

v . As a result
φ∗(t) ⊂ PZα∗ , where the PHZD manifold, PZα∗ := PZv1 ∪
PZv2 · · · ∪ PZvn p , depends on the parameters α∗. �

C. Sparse NLP Formulation

It is known that the direct collocation formulations signifi-
cantly increase the number of constraints and optimization vari-
ables, leading to a large NLP problem. Yet, the Jacobian matrix

of constraints is very sparse; the density of the matrix is far
less than 1% in many cases. This feature allows the problem
to be solved efficiently using large sparse NLP solvers. To pro-
mote the convergence properties of the problem, we will further
exploit this sparsity structure of the formulation.

Defect Variables: In the previous discussion, we have intro-
duced many defect variables to simplify the constraints. Now
we extend this idea to variables that affect the entire domain,
namely the duration TI ,v and parameters αv . Specifically, we
define these variables at each node despite the fact that they
should be constant on a given domain. While at first glance this
modification seems counterintuitive and superfluous, it bears
distinct advantages. First, it distributes the “decision weight” of
these variables, so each design variable only affects constraints
on the neighboring points, not the entire domain. This attribute
is helpful for NLP solvers that iterate on linear approximations
of the problem (e.g., sequential quadratic programming and IP).
To ensure that these variables are indeed the same at all nodes,
we additionally enforce the following linear constraints:

T
(i)
I ,v − T

(i+1)
I ,v = 0 (44)

α(i)
v − α(i+1)

v = 0 (45)

for all i ∈ {0, 1, 2, . . . , Nv − 1}.
Analytic Jacobian: For a gradient-based NLP solver, provid-

ing more accurate information is vital to its convergence. Typi-
cally, the Jacobian of constraints and cost function are computed
via finite differencing or automatic differentiation of functions.
Despite being straightforward to compute, the finite difference
approach is very slow to evaluate numerically and often has very
low accuracy. Automatic differentiation provides good accuracy,
however, it often suffers from limitations caused by restrictions
on the tools available. On the other hand, our formulation yields
much simpler closed-form cost and constraints, therefore gen-
erating the analytic Jacobian (or gradient) of these expressions
becomes feasible. In this paper, we use a custom-developed
Wolfram Mathematica package to symbolically compute the
closed-form expression and the analytic Jacobian of these func-
tions. These symbolic expressions then can be exported into
C++ source codes and compiled as static libraries that could be
called by the NLP solver during the optimization evaluation. The
whole process is executed a priori and only needs to generate
once for the functions that will be called multiple times at each
optimization iteration. Therefore, the overhead time of gener-
ating the symbolic expressions will not affect the execution of
NLP iterations.

Sparse Jacobian Construction: To expedite the optimization
evaluation, we exploit the sparsity pattern of the Jacobian matrix
further. First, we group variables and constraints that defined at
each node together, then assign indices for each of them based
on their locations at the entire variables and constraints. For
example, let ic be the indices of an arbitrary constraint c, and
jx be the indices of dependent variables xc of the constraint c.
Then the Jacobian of this constraint is given by anc × nx matrix
with nc = Dim(ic) and nx = Dim(jx). Based on the indices
of variables and constraints, the large sparse Jacobian matrix
can be constructed based on the compressed column storage
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Fig. 6. Illustration of sparse Jacobian matrix construction.

format [58]. Combining indices and values of nonzero elements
of all constraints, the whole Jacobian matrix of constraints is
created using the MATLAB function, sparse. See Fig. 6 for an
illustration of this process.

V. APPLICATIONS ON AN UNDERACTUATED HUMANOID

In this section, we apply the HZD framework and direct col-
location optimization to explicitly generate two different types
of dynamic and energy-efficient walking gaits on DURUS—a
spring-legged humanoid robot.

A. DURUS Model

DURUS is a three-dimensional humanoid robot designed and
built by SRI International to implement efficient and dynamic
locomotion. DURUS consists of 15 actuated joints and two pas-
sive springs. The passive springs, which are rigidly fixed to and
perpendicular to the bottom of each foot, are designed to reduce
the energy loss during foot impact while walking. Here we use
the floating base coordinates, assuming that the origin of the
6-D base coordinates is located at the center of the pelvis link
(see Fig. 7). The generalized coordinates, q ∈ Q ⊂ RnR with
nR = 23, of the robot are then determined by (2) where qr con-
sists of 15 actuated joints and 2 passive springs shown in Fig. 7.
For the convenience of conventions, we define the generalized
coordinates of the robot in terms of stance and nonstance leg
angles, instead of left and right leg angles. Followed by this
definition is a relabeling of coordinates at foot impact due to
the change of stance leg, which can be done by a linear map,
R : Q → Q, in which left and right leg angles are switched ac-
cordingly and the sign of all roll and yaw angles, as well as the
base position in y−axis direction, are “flipped.” For the sake
of simplicity, we assume the right leg is the stance leg in the
remainder of the section.

B. 3-D Flat-Footed Walking

We start with the 3-D flat-footed walking—one of the most
commonly seen robotic walking behaviors. The term “flat-
footed” indicates that the feet remain flat with respect to the
ground plane. It is used to distinguish walking from the multi-
contact case—which will be discussed later—where feet can be
angled in any number of ways. In the following discussions, we

Fig. 7. Generalized coordinates of the DURUS robot, whereR0 is the inertial
frame, Rb is the robot base frame located at the center of the pelvis with pb , φb
is the position and orientation of Rb . ψw , φw , and θw are the waist yaw, roll,
and pitch angles, ψlh , φlh , θlh , θlk , θla , φla , and rls are the left hip yaw, hip
roll, hip pitch, knee pitch, ankle pitch, ankle roll angles, and spring deflection,
respectively, andψrh , φrh , θrh , θr k , θra , φra , and rr s are the right hip yaw, hip
roll, hip pitch, knee pitch, ankle pitch, ankle roll angles, and spring deflection,
respectively. The red arrow of each joint represents the positive rotation (or
translation) axis of the corresponding joint using the right-hand rule.

Fig. 8. Illustration of the location of foot contacts.

denote p�(q) = [px�, p
y
�, p

z
�]T : Q → R3 as the 3-D Cartesian

position of a point in R0 , and φ�(q) = [φx�, φ
y
�, φ

z
�]T : Q →

SO(3) as the 3-D orientation of the link with respect toR0 . The
subscript � indicates the name of the contact point.

Hybrid System Model: The design of passive springs at the
end of each leg permits a nontrivial double support phase, there-
fore, the hybrid system model of 3-D flat-footed walking of
DURUS consists of two domains: a double-support domain,
Dds , and a single-support domain, Dss . Specifically, the holo-
nomic constraints for each domain of 3-D flat-footed walking are
given by

ηds(q) := (psf, φsf, pnsf, φnsf) ∈ R12

ηss(q) := (psf, φsf) ∈ R6

where sf and nsf be a point on the stance foot and nonstance
foot, respectively (see Fig. 8). The admissibility conditions for
each domain are determined according to the discussion in
Example 2. In addition, the nonstance foot should be always
above the ground during the single-support domain, which could
be formulated as an unilateral constraint of the domain, defined
as: hss(q) := pznsf(q) ≥ 0.
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Accordingly, a transition from double-support to single-
support domain takes place when the normal force on non-
stance foot reaches zero, and a transition from single-support to
double-support domain occurs when the nonstance foot strikes
the ground, i.e.,

Hds→ss(q, q̇, u) := λ
f z
nsf(q, q̇, u) (46)

Hss→ds(q, q̇, u) := pznsf(q). (47)

No impact or coordinate change occurs when transitioning from
a double-support to single-support domain, i.e., Δds→ss = I
where I is an identity matrix. On the other hand, the reset map,
Δss→ds , needs to incorporate the impact of the nonstance foot
strikes and the change of coordinates caused by switching of the
stance leg.

Virtual Constraints: The choice of virtual constraints is in-
spired by authors’ previous work on human-inspired bipedal
locomotion [43]. Different from [43], we use 4th-order Bézier
polynomials as desired outputs. Considering that the robot has
actuated ankle and knee joints, we pick the linearized hip posi-
tion given by

δphip(q)=Laθra + (La + Lc)θrk + (La + Lc + Lt)θrh (48)

as the velocity-modulating output for both the double-support
and single-support domains, whereLa ,Lc , andLt are the length
of ankle, calf, and thigh link of the robot, respectively.

In addition, we pick following position-modulating outputs
for the double-support domain:

1) stance knee pitch: ya2,skp = θrk;
2) stance torso pitch: ya2,stp = −θra − θrk − θrh;
3) stance ankle roll: ya2,sar = φra;
4) stance torso roll: ya2,str = −φra − φrh;
5) stance hip yaw: ya2,shy = ψrh;
6) waist roll: ya2,wr = φw;
7) waist pitch: ya2,wp = θw;
8) waist yaw: ya2,wy = ψw;
9) non-stance knee pitch: ya2,nskp = θlk .

yielding Ods = {skp, stp, sar, str, shy,wr,wp,wy,nskp}.
Due to the holonomic constraints imposed on the nonstance
foot, nonstance leg joints should not be controlled via virtual
constraints. Otherwise, the system will be over-constrained. An
exception is the nonstance knee pitch angle due to the fact that
the passive spring introduces one additional degree of freedom
in the nonstance leg.

For the single-support domain, we define five outputs in addi-
tion to the outputs listed above, considering the fact that the non-
stance foot is no longer constrained in contact with the ground.
These outputs are:

1) nonstance slope: ya2,nsl = −θra − θrk − θrh
+ Lc

Lc +Lt
θlk + θlh ;

2) nonstance leg roll: ya2,nslr = φrh − φlh ;
3) nonstance foot roll: ya2,nsfr = pz

nsfI(q) − pz
nsfO(q);

4) nonstance foot pitch: ya2,nsfp = pznst(q) − pznsh(q);
5) non-stance foot yaw: ya2,nsfy = pynst(q) − pynsh(q).

Fig. 9. Illustration of outputs associated with pitch angles. (a) Flat-footed
outputs. (b) Heel–toe outputs.

See Fig. 9(a) for the illustration of some outputs de-
fined above. Consequently, we have the output indexing set
Oss = Ods ∪ {nsl, nslr, nsfr, nsfp, nsfy}. The last three outputs
are nonlinear outputs equivalently representing the orientations
of the nonstance foot. The locations of points nst, nsh, nsfI ,
and nsfO are shown in Fig. 8. These outputs were chosen over
Euler angles in order to avoid expressions that contain inverse
trigonometric functions. To guarantee that the nonstance foot
remains flat, the desired outputs associated with these three out-
puts should be zero.

Gait Generation: We apply the direct collocation based HZD
optimization framework in Section IV to design efficient and dy-
namic walking gaits for this hybrid system model. The number
of cardinal nodes is chosen as 10 and 20 for the double-support
and single-support domain, respectively. To achieve efficient
walking, we set the objective function to minimize the mechan-
ical cost of transport (CoT) of the walking gait. Hence, the
running cost of the problem is defined as

L(q̇, u, η̄v ) :=
1

mgd(η̄v )
‖Pv (q̇, u)‖ (49)

where mg is the robot weight, d(η̄v ) is the distance traveled
during a gait which could be determined from the desired holo-
nomic constraints, and Pv (q̇, u) is the total power consumed
assuming no power-regeneration (see [59]). In practice, we en-
force additional physical constraints to achieve sustainable 3-D
flat-footed walking gaits based on observations of the actual
implementation on physical hardware.

Restricting torso movement: The robot tends to fall more
easily when the upper body wobbles. This can be prevented
by constraining the torso movement in the gait design. With
φtor(q) : Q → SO(3) being the orientation of the upper torso
link, we restrict this orientation within a small range specified
by [φmin

tor , φ
max
tor ], i.e.,

φmin
tor ≤ φtor(q) ≤ φmax

tor . (50)

Constraining impact velocities: It becomes apparent through
testing that the swing foot impacting too hard on the ground will
destabilize the robot’s balance. Hence, we enforce that the Carte-
sian velocities of the swing foot at impact ḣnsf(q(N s s ) , q̇(N s s ))
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TABLE I
BOUNDARY VALUES FOR PHYSICAL CONSTRAINTS

Constraint Minimum Maximum

Torso [−0.2,−0.1,−0.1] [0.2, 0.4, 0.1]
Impact velocity [−0.1,−0.1,−0.25] [0.3, 0.1, 0]
Leg separation angle −0.1 0

must be restricted within the region defined by {vmin , vmax}
vmin ≤ ḣnsf(q(N s s ) , q̇(N s s )) ≤ vmax . (51)

Avoiding swing leg collision: Due to the existence of compli-
ance in the mechanical system, the swing leg will hit the stance
leg if they are not separated enough. The separation of legs can
be expressed as the difference between stance and swing hip
roll angles. Therefore, during the single-support domain, the
nonstance leg roll output is constrained as

φmin ≤ ya2,nslr(q) ≤ φmax (52)

where φmax > φmin ≥ 0 are the maximum and minimum al-
lowable separation angles.

The minimum and maximum values for the above physi-
cal constraints are chosen heuristically based on observing the
behavior of actual robot during experiments. The final values
used in this paper are listed in Table I. The total number of
optimization variables and constraints are 8974 and 9893, re-
spectively, with the sparsity of the constraints Jacobian matrix
being 0.13%. The performance of the gait optimization and the
simulation and experimental validations of an optimal HZD gait
will be discussed in Section VI.

C. 2-D Heel–Toe Walking

In this paper, we use the term “2-D walking” to indicate
that the behavior of the robot is restricted to the sagittal plane
only. It is important to point out that we still use the full-order
3-D model of DURUS in this application despite the motion
being planar. The planar motion is realized by connecting a
supporting boom to the torso via a prismatic joint. This linear
boom is designed to freely slide along a straight gantry mounted
on the ceiling, allowing the robot to move in the sagittal plane
only. The prismatic joint connection between the torso and the
boom introduces a 3-D holonomic constraint. Let ts be the point
at the connecting joint, these constraints are pyts, φ

x
ts, and φzts.

The inertial effect of the boom mass on the system dynamics is
modeled by adding the kinetic energy to the system Lagrangian
as in [60].

Hybrid System Model: Different from the flat-footed walking,
2-D heel-toe walking allows the feet to rotate about their toes
or heels, resulting in heel- or toe-only contacts with the ground.
This walking closely emulates normal human walking pattern
that we discussed in Example 1. This hybrid system model
has four domains in total: a toe-strike domain, Dts, a toe-lift
domain, Dtl, a heel-lift domain, Dhl, and a heel-strike domain,
Dhs , as illustrated in Fig. 2. We assume that a walking gait
cycle starts from the toe-strike domain, and ends at the heel-

strike domain. Based on the contact conditions, we specify the
holonomic constraints for each domain as

ηts(q) := (pyts, φ
x
ts, φ

z
ts, pst, φsf, pnst, φ

x
nsf, φ

z
nsf) ∈ R14

ηtl(q) := (pyts, φ
x
ts, φ

z
ts, pst, φsf) ∈ R9

ηhl(q) := (pyts, φ
x
ts, φ

z
ts, pst, φ

x
sf, φ

z
sf) ∈ R8

ηhs(q) := (pyts, φ
x
ts, φ

z
ts, pst, φ

x
sf, φ

z
sf, pnsh, φ

x
nsf, φ

z
nsf) ∈ R13

where st, nst, and nsh are the position of the stance toe, the
nonstance toe, and the nonstance heel, respectively (see Fig. 8).
The contact wrench constraints are similar to the flat-footed
walking case with an exception that the ZMP constraints are
no longer required due to the supporting boom. The unilateral
constraints are determined so that toe or heel position of the foot
should be above the ground, i.e.,

hts(q) := (pznsh) , htl(q) := (pznsh, p
z
nst)

hhl(q) := (pzsh, p
z
nsh, p

z
nst) , hhs(q) := (pzsh, p

z
nst) .

Correspondingly, the guard conditions are defined as

Hts→tl(q, q̇, u) := λ
f z
nst(q, q̇, u)

Htl→hl(q, q̇, u) := λ
f z
sh (q, q̇, u)

Hhl→hs(q, q̇, u) := pznsh(q)

Hhs→ts(q, q̇, u) := pznst(q).

There is no impact or coordinate change involved with the toe-
lift and the heel-lift event, therefore, the associated reset map is
an identity map for these two transitions. The other two events
involve an impact, and among them the toe-strike event requires
coordinate change, or relabeling, due to the switching of the
stance and the nonstance foot.

Virtual Constraints: Outputs for each domain are selected
from the outputs that we have defined for the flat-footed walking
plus two new outputs, namely [see Fig. 9(b)]

1) stance ankle pitch: ya2,sap = θra
2) non-stance ankle pitch: ya2,nsap = θla .

We determine the position-modulating outputs of each do-
main in terms of the following output indexing sets:

Ots = {skp, stp,wr,wp,wy, nskp}
Otl = Ots ∪ {nsl, nsap, nslr, nsfr, nsfy}
Ohl = Ots ∪ {sap, nsl, nsap, nslr, nsfr, nsfy}
Ohs = Ots ∪ {sap, nsap} .

For domains Dts and Dtl , we define the same velocity-
modulating output as stated in (48). Because the nonflat stance
foot will make it difficult (sometimes impossible) to directly
control the forward speed of the hip, there is no velocity-
modulating output defined on Dhl and Dhs .

Gait Generation: Dynamic and energy efficient 2-D heel-toe
walking gaits will be generated using the same procedures as
the 3-D flat-footed walking. Specifically, we pick the number of
cardinal nodes as 10, 15, 20, and 12 for the toe-strike, toe-lift,
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heel-strike, and toe-strike domain, respectively. To achieve a pla-
nar motion also with the other parts of the body, we particularly
require the desired outputs that are associated with roll and yaw
angles to be zero. These outputs include ya2,wr , y

a
2,wy , ya2,nslr ,

ya2,nsfr , and ya2,nsfy . This requirement can be achieved by setting
the upper and lower bound of parameter sets αo associated with
these outputs to zero. Also, the impact velocity constraint in
(51) is now imposed on heel-strike and toe-strike, respectively.
Considering this heel-toe walking behavior has four domains,
the total number of optimization variables and constraints is
21309 and 22721, respectively.

VI. EXPERIMENTAL RESULTS

In this section, we present simulation and experimental re-
sults of two types of walking gaits on DURUS generated from
the proposed HZD optimization method. The performance of
this method under different conditions is also evaluated and
discussed.

A. Setup

The HZD gait optimization problem is solved by IPOPT [61]
interfaced with MATLAB on a laptop computer with an Intel
Core i7-6820HQ processor (2.7 GHz × 8) and 8 GB of RAM.
In addition, we use the linear solver ma57 for IPOPT. Optimal
gaits generated from the optimization are then implemented on
the DURUS hardware. For more details, we refer the readers
to [33].

During the experiments, the robot walked on a 5′ × 8′ tread-
mill platform. The speed of the treadmill was automatically
controlled to match the walking speed of the robot. For 2-D
restricted walking, the top of the robot torso was pinned to a
specially designed boom supported by a straight gantry paral-
lel to the treadmill. The boom allows the robot to freely move
up and down, forward and backward, and to rotate about the
y−axis, but restricts its motion to the sagittal plane only. For
the 3-D humanoid walking gait, there was no supporting boom
attached, rather a safety catch rope was tied to the robot and
ceiling. The rope is loose enough not to support the robot as it
walks, but catches before the robot hits the ground in case of a
fall.

B. 3-D Flat-Footed Walking

In this section, we present the simulation and experimental
results of one of many stable periodic gaits obtained from the
optimization. The step length of this particular gait is 0.13 m and
the step width is 0.24 m. The total elapsed time of one complete
gait step is 0.48 s. The desired linearized hip velocity is 0.3 m/s
for this gait.

Simulation Results: To demonstrate the convergence of ac-
tual outputs to given desired trajectories under the feedback
controllers, we simulate the system starting from a disturbed
rest position. This initial condition is determined by slightly
disturbing the fixed point of the original periodic orbit on the
Poincaré section, and set all joint velocities to be zero. The feed-
back controllers drive the system to periodic limit cycles even

Fig. 10. Phase portraits of representative joints in the 3-D flat-footed walk-
ing simulation starting from the rest. The red � shows the initial point of
the simulation. The dashed lines represent the discrete jump in system states
at the end of each step. The domain transitions are represented by � and
blue ◦, respectively. (a) Stance spring. (b) Waist pitch. (c) Stance knee pitch.
(d) Nonstance hip roll.

starting from a point that is not on the orbit. This is demonstrated
in Fig. 10, where we show phase portrait plots of four represen-
tative joints. As shown in these figures, both uncontrolled states
(stance spring) and controlled states (waist pitch, stance knee
pitch, and nonstance hip roll) converge to periodic limit cycles
under the feedback controllers. The maximum magnitude of the
eigenvalues of the Jacobian of the Poincaré return map is 0.24,
which further indicates that the gait is stable.

Experimental Results: The 3-D flat-footed gait walked stably
for hours on multiple occasions. The stable walking of DU-
RUS was showcased at the robot endurance test at the DARPA
robotics challenge finals, during which DURUS exhibited sus-
tained walking over large distances with a consistently low CoT.
Fig. 11 shows the periodic phase portraits of each of the actuated
joint angles in one of the experiments. Particularly, we show the
periodic limit cycles in terms of left/right leg angles, rather than
in stance and nonstance leg angles. The comparison of the corre-
sponding periodic orbit in simulation is also plotted in the figure,
which shows very close match between experimental and simu-
lation trajectories despite discrepancies between simulation and
reality. These periodic limit cycles, in turn, represent a cyclic
behavior of the robot, i.e., periodic walking gaits. We show tiled
images of one gait step of the stable 3-D walking in the experi-
ment and simulation in Fig. 12. This successful stable walking
in 3-D is a strong indicator of the practicality of the presented
optimization approach on humanoid robots. A video of this 3-D
flat-footed walking gait in simulation and experiment can be
found in the attached video and [62].

Remark 9: The passive springs of DURUS is only consid-
ered in the gait optimization process in Section V-B to generate
dynamically compatible motion for the full-order model of the
robot, but not explicitly incorporated within the feedback control
in experiments due to the fact that our current choice of outputs
is independent of the vertical springs in this paper. Moreover,
due to the sufficient damping and the natural frequency of the
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Fig. 11. Periodic limit cycles of actuated joints in the experiment and overlaid on the simulated gait (units: rad and rad/s; symmetric joints omitted for clarity).

Fig. 12. Tiled still images from the simulation and experiment of DURUS
flat-footed walking in 3-D at 0.3 m/s.

vertical springs, the actual operating frequency of these virtual
springs (typically around 2 Hz) is significantly smaller than the
resonant frequency of the springs. Hence, we have not noticed
any excessive resonant motion of the springs induced from the
motion and control in our experiments.

3-D Walking Efficiency: DURUS uses an onboard battery
pack to supply power to all electrical components of the robot,
including the central control computer, motor drivers, and con-
trollers, motors, and sensors. The specific cost of electrical trans-
port cet was calculated as in [63], where the total energy con-
sumed over the weight and distance traveled for step i as

cet,i =
1

mgdi

∫ t−i

t+i

Pel (53)

where Pel is total consumed electrical power and di is the x-
position traveled by the nonstance foot of the robot through the
duration of the ith step. In particular, Fig. 13 shows measure-
ments of the electrical CoT of 3-D flat-footed walking gait over
450 steps. Power data were computed directly from current and
voltage measured on the output of the battery pack.

Fig. 13. Electrical CoT for a 3-D flat-footed walking experiment over
450 steps with a mean CoT of 1.33.

The average total transport cost was measured to be 1.33,
which demonstrates a significant improvement in humanoid
locomotion economy. Notable comparable examples include
ASIMO, which is estimated to have an electrical CoT of 3.2 [64].
Notably, other nonhumanoid bipeds have been built specifically
to demonstrate more efficient locomotion, yielding transport
costs under 0.2 [14]. By these results, we demonstrate that gait
economy can be advanced in more-traditional 3-D humanoid
forms, at least in part as a result of our scalable and energy-
optimized gait generation.

In addition, the average electrical CoT accounts for the power
only consumed on actuation—excluding energy consumption
on other electrical components, such as control computer and
sensors—is 0.83. In comparison, the total mechanical CoT of
the ideal robot model from our optimization is 0.16. That is, we
have observed a significant increase in the power consumption
in experiment due to the efficiency of actuator and transmission
as well as extra control efforts of tracking the desired trajectories
due to the model mismatch between simulation and experiment.

C. 2-D Heel–Toe Walking

An optimized gait from the heel–toe walking with the desired
velocity 0.35 m/s and the step length 0.36 m is shown in Figs. 14
and 15. The maximum magnitude of the eigenvalues of the
Jacobian of the Poincaré return map of this gait is 0.96, which
indicates theoretical stability of the walking gait. In particular,
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Fig. 14. Stroboscopic figure of the 2-D heel–toe walking.

Fig. 15. Experimental results of multicontact heel–toe walking with DURUS
in 2-D, showing phase plot of a representative joint angle both in simulation and
experiment (units: rad and rad/s). Four tiled images of DURUS near times of
multicontact domain switches are shown in correspondence with their location
in the phase plot.

the phase plot of a representative joint angle in both simulation
and experiment shows the existence of stable periodic orbits
of the system. The stroboscopic figure of simulated 2-D heel–
toe walking gaits is shown in Fig. 14. Compared to flat-footed
walking, both feet are no longer flat on the ground or in the air
during the 2-D heel–toe walking. The most apparent benefit of
the heel–toe walking is a longer step length than its counterpart
gaits, likely because the feet can stretch further out in front
by landing on the heel, exhibiting more qualitatively human-
like behaviors. The simulation and experimental results of the
2-D heel–toe walking gait can be found in the attached video
(Supplementary material) and [65].

D. Performance Evaluation of the Optimization method

Optimization Performance on DURUS: The run time and con-
vergence rate of the optimization greatly depends on a number
of factors. These include the reachable set of the optimiza-
tion variables as determined by the boundary values and con-
straints, and the initial guess used to seed the solution. With more
relaxed upper and lower limits of variables and constraints, the

TABLE II
RUNTIME AND CONVERGENCE TEST OF THE OPTIMIZATION

Init. Guess Bound. Iteration Feasibility Runtime (s)

Random Relaxed 856 2.24 × 10−9 675.49
Regular 1209 7.89 × 10−13 911.48

Restricted 2811 3.08 × 10−9 2027.08

Old gait Relaxed 193 4.91 × 10−09 150.28
Regular 357 3.68 × 10−11 375.9

Restricted 693 5.21 × 10−13 620.03

optimization tends to converge more quickly. However, some
physical constraints must be enforced strictly due to the hard-
ware limitations. Hence, not every constraint or variables can
be relaxed. The initial guess seeded to the optimizer also affects
the convergence of the problem. The optimization converges
quickly to a solution if seeded with a “better” initial guess, such
as a solution from the previous optimization. Table II shows
partial statistical results of the optimization of 3-D flat-footed
walking with DURUS using different optimization parameters.
There are two different seeds: the first set of initial guesses is
randomly picked and the second set is obtained from a previous
solution that does not satisfy all NLP constraints. We also con-
sidered three different boundary conditions for NLP constraints:
a “relaxed” condition indicates the reachable set of optimiza-
tion variables set to be large, for example, larger joint velocity,
higher actuator torques, and relaxed configuration limits, etc.;
a “regular” condition suggests that the boundaries of variables
are set to reasonable values, mostly set to slightly tighter limits
than what the hardware is capable of; a “restricted” condition
restricts the reachable set of the optimization variables within
a very small region so as to achieve walking gaits with certain
fixed behaviors, for instance maintaining a straight torso.

Our results showed that adjusting the initial guess and re-
laxing the constraints can improve the convergence time of the
optimization. However, we note that even a completely random
initial guess subject to strict hardware constraints still converges
to a feasible solution successfully. This suggests that creative
seeding is a helpful but perhaps unnecessary measure for solving
such high-dimensional problems.

Comparison Versus Existing HZD Optimization Approaches:
Finally, we compared the computational performance of the pro-
posed approach and existing HZD optimization approaches us-
ing direct single shooting and multiple shooting methods. Con-
sidering both shooting methods are not capable of solving HZD
optimization for high-dimensional humanoids, we particularly
used a 5-link planar biped used in [49] for the single shooting
optimization and 7-link spring-leg planar biped in [55] for the
multiple shooting optimization. Specifically, the following tests
are evaluated with MATLAB’s fminconNLP solver instead of
IPOPT. Moreover, Considering that the shooting methods are
not robust enough to handle random initial guesses, we take the
parameters from previous results as the initial guess. The com-
parison results under the same physical constraints and initial
guesses are shown in Tables III and IV.

The results demonstrate that our proposed approach based on
direct collocation methods converges significantly faster than
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TABLE III
COMPARISON RESULTS BETWEEN THE (LOCAL) DIRECT COLLOCATION

OPTIMIZATION VERSUS THE SINGLE SHOOTING OPTIMIZATION

Method CPU time (s) Iteration Function Calls

Single shooting (fmincon) 162.59 21 612
Direct collocation (fmincon) 5.17 23 55
Direct collocation (IPOPT) 1.60 47 59

TABLE IV
COMPARISON RESULTS BETWEEN THE (LOCAL) DIRECT COLLOCATION

OPTIMIZATION VERSUS THE MULTIPLE SHOOTING OPTIMIZATION

Method CPU time (s) Iteration Function Calls

Multiple shooting 5027.45 1155 16 24 687
Direct collocation (fmincon) 84.30 44 123
Direct collocation (IPOPT) 41.47 207 845

the existing HZD gait optimization formulations using shooting
methods. The direct collocation method has approximately 30
to 100 times faster than the single shooting method depends on
which solver has been used, and is approximately 60 to 100
times faster than the multiple shooting method. That is because
using numerical finite difference methods to compute the gra-
dient information requires an extensive amount of computing
resources. It can also be observed from the total number of
function calls of different optimization methods used. In our
direct collocation formulation, the use of the analytic Jacobian
reduces the function calls significantly compared to the numer-
ical finite differentiation used for direct shooting methods.

The direct collocation method also reduces the number of
iterations to a feasible solution compared to the direct multi-
ple shooting optimization, as shown in Table IV. It is due to
the relatively linear relationships between the constraints and
NLP variables in the direct collocation optimization. In prin-
ciple, the same result should be observed in the comparison
versus the single shooting optimization. However, the particu-
lar case of the 5-link point feet planar model allows explicitly
solving the preimpact states and the closed-form solution of
the two-dimensional zero dynamics, which in turn benefit the
overall convergence of the single shooting optimization. Unfor-
tunately, the same approach cannot extend to high-dimensional
humanoid robots or highly underactuated systems. Besides, us-
ing numerical finite difference methods to compute the gradient
information requires the extensive amount of computing re-
sources. As a result, the overall CPU time used in the single
shooting optimization is still comparatively more than the col-
location method. With that being said, even when the partial
zero dynamics can be computed in closed form as it appears in
many fully actuated humanoids [66], [67], the single shooting
optimization requires incredible amounts of computing time.
Interestingly, even though the number of iterations is, in fact,
greater when using IPOPT, yet still it uses the least amount
of wall time. This indicates the fact that IPOPT performs
better for large-scale sparse problems. For the 7-link spring-
leg planar robot as in [55], the closed-form solution of the HZD
cannot be obtained explicitly. Therefore, the numerical forward

integration of zero dynamics must be performed using explicit
Runge–Kutta methods. As a result, the number of iterations
and functions calls is notably more than that of the collocation
method. Moreover, the multiple shooting method tends to be
significantly less reliable; the number of iterations is far more
than the direct collocation optimization.

VII. CONCLUSION

We presented a generalized optimization framework for syn-
thesizing formally stable locomotion on underactuated robots as
complex as humanoids. This framework blends the theoretical
foundation of HZD with direct collocation trajectory optimiza-
tion technique. As a result of this process, we formulate our gait
design problem as a nonlinear program that can be solved in
under ten min with standard algorithms on a laptop computer.
Encouragingly, despite the high dimensionality of the 10 000-
variable problem, the optimization even converges with random
initial guesses. Furthermore, this method optimizes the inter-
actions of the full order multibody dynamics of multidomain
humanoid hybrid system models, without conforming motions
to simpler more-tractable dynamics.

Using the spring-legged humanoid platform, DURUS, this
method produced both flat-footed and heel–toe walking. By op-
timizing for efficient locomotion, we achieved an average CoT
of 1.33, significantly lower than that reported by other human-
scale humanoid robots, such as ASIMO [64]. It is important
to note that energy economy is a product of many factors, in-
cluding mechanics as well as control. While it is difficult to
determine that the control is necessarily responsible for this re-
ported economy, these results demonstrate that the presented
method was capable of controlling a machine with underactu-
ated features designed to facilitate efficiency (such as soft pris-
matic ankle compliance). More pointedly, we believe that this
is an indicator that the control works in concert with DURUS’
energy-conscious underactuated features via optimization, and
not working with them via compensation methods. These effi-
cient and stable walking gaits were exhibited in public at the
DARPA Robotic Challenges finals, where it competed against
the Sandia National Labs robot, STEPPR [68], in the Robot
Endurance Test. Highlights of DURUS walking at the DRC fi-
nals can be found at [69]. Recently, the proposed scalable HZD
gait optimization method has been extended to 3-D multicon-
tact heel–toe walking to achieve natural human-like locomotion
on DURUS, and further improved the energy efficiency [70],
[71]. We believe that these 3-D walking results signal that HZD
approaches have overcome a significant technical hurdle, and
are, therefore, sufficiently equipped to tackle the complexity of
humanoid locomotion.
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