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Abstract Recent research has developed experimen-

tally verified dynamic models for skid-steered wheeled

vehicles and used these results to derive a power model

for this important class of all-terrain vehicles. As pre-

sented in this paper, based on the torque limitations of

the vehicle motors, the dynamic model can be used to

develop payload and terrain-dependent minimum turn

radius constraints and the power model can be used

to predict the energy consumption of a given trajec-

tory. This paper uses these results along with Sampling

Based Model Predictive Optimization to develop an

effective methodology for generating dynamically fea-

sible, energy efficient trajectories for skid-steered au-

tonomous ground vehicles (AGVs) and compares the

resultant trajectories with those based on the standard

distance optimal trajectories. The simulated and exper-
imental results consider an AGV moving at a constant

forward velocity on both wood and asphalt surfaces un-

der various payloads. The results show that a small

increase in the distance of a trajectory over the dis-

tance optimal trajectory can result in a dramatic sav-

ings in the AGV’s energy consumption. They also show

that distance optimal planning can often produce tra-

jectories that violate the motor torque constraints for

skid-steered AGVs, which can result in poor navigation

performance.
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1 Introduction

In recent years, autonomous ground vehicles (AGVs)

have played a major role in various fields such as space

exploration, military missions, and agricultural work.

In the future, they are expected to perform a variety

of tasks in unstructured and dynamic outdoor environ-

ments with increasing autonomy. However, an AGV has

a finite energy supply stored in batteries and/or fuel,

which limits its operational endurance. Hence, to enable

an AGV to carry out more extensive missions without

recharging or refueling, energy conservation is highly

important. Some of this conservation may be accom-

plished by using hybrid power technologies Dyer (2002).

However, once the power system on an AGV is chosen,

substantial energy conservation may be achieved via

energy efficient motion planning.

The motion planning task is commonly based on

minimization of the distance traveled or the traveling

time and most motion planning algorithms focus on

these problems, for example, Perez and Wesley (1979),

Schwartz and Sharir (1988), Hwang and Ahuja (1992).

However, as this paper highlights, distance minimiza-

tion can lead to trajectories that have unnecessary en-

ergy consumption and/or violate the torque constraints

of a vehicle motor, causing poor trajectory tracking.

One should note that for constant velocity, as consid-

ered in this paper, the minimum time and minimum

distance motion planning problems are identical.

Despite its practical significance, to date there is

very little published research in the field of energy effi-

cient motion planning for mobile robots. In Barili et al

(1995) the concept of vehicle velocity profile is used

to save energy for a mobile robot working in environ-

ments cluttered with moving obstacles. That energy-

savings strategy avoids frequent acceleration and de-
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celeration because of the high-energy consumption, but

the work was limited to only straight line motion and

did not consider more general curvilinear motion. In

Mei et al (2004) a more comprehensive approach to

energy efficient motion planning for mobile robots is

presented. Power models of the robot motors are devel-

oped based on a combination of analytical motor mod-

els and experimental data. However, the constraints of

a dynamic model (e.g., the minimum turn radius con-

straints considered here) are not considered. Further-

more, the power model is not based upon a dynamic

model; hence, the power model is not valid when the

vehicle payload or the terrain surface changes, and de-

veloping a new model requires a completely new set of

experiments.

This paper considers the development of dynami-

cally feasible, energy efficient motion planner for skid-

steered AGVs, an important and large class of all-

terrain vehicles. A skid-steered vehicle can be either

tracked or wheeled and is characterized by two features.

First, the vehicle steering depends on controlling the

relative velocities of the left and right side wheels or

tracks. Second, all wheels or tracks remain parallel to

the longitudinal axis of the vehicle and vehicle turning

requires slippage/skidding of the wheels or tracks.

The research by Yu et al (2010) has developed

an experimentally verified dynamic model for a skid-

steered wheeled vehicle. Collins et al (2011) and Yu

et al (2011) used these results to derive a correspond-

ing power model. As initially shown in Ordonez et al

(2012b), based on the torque limitations of the vehi-

cle motors, the dynamic model can be used to develop

payload and terrain-dependent minimum turn radius

constraints. The work also presented the usage of the

power model to predict the energy consumption of a

given trajectory.

Here, the above results along with Sampling Based

Model Predictive Optimization (SBMPO), developed

by Dunlap et al (2010) and Dunlap et al (2011a), are

used to develop an effective methodology for generating

dynamically feasible and energy efficient trajectories for

skid-steered AGVs. The resultant trajectories are then

compared with minimum distance based trajectories,

which is a more standard motion planning approach. It

should be noted that by using the energy as the cost

function, the proposed motion planning task can also be

approached by alternative kino-dynamic motion plan-

ners based on optimality such as RRT* Likhachev and

Ferguson (2009) and Probability Road Maps Karaman

and Frazzoli (2011).

The primary contribution of this paper is the de-

velopment of an effective motion planning strategy for

energy efficient trajectories that are dynamically fea-

sible (which for a skid-steered vehicle means that it

satisfies a minimum turn radius constraint). The gen-

eral methodology relies on the formulation and use of

an optimistic heuristic corresponding to an energy cost

function and is applicable to a wide variety of mobile

robots. For skid-steered vehicles, the results of dynami-

cally feasible, energy efficient motion planning are com-

pared with the more standard distance optimal motion

planning, revealing the substantial energy savings that

can be achieved and the danger of developing infeasible

trajectories.

One of the secondary contributions is the further

experimental verification of the previously developed

dynamic model for skid-steered vehicles under various

combinations of payloads, speeds, and terrains. Also,

this paper demonstrates that for skid-steered vehicles,

minimum turn radius constraints are dependent upon

the vehicle payload and the terrain being traversed, but

are not very dependent upon the vehicle speed.

The remainder of this paper is organized as follows.

Section 2 presents the kinematic, dynamic, and power

models for a skid-steered four-wheeled vehicle. Section 3

briefly reviews SBMPO, and then describes the models

and methodology for using SBMPO to generate dynam-

ically feasible, energy efficient trajectories. For both

wood and asphalt surfaces, Section 4 first presents and

discusses the results of experiments for dynamic model

verification. It then presents simulation and experimen-

tal results that compare dynamically feasible, energy

efficient motion trajectories with more standard dis-

tance optimal trajectories for several combinations of

payloads, surfaces, and speeds. Section 5 presents pre-

liminary simulation results for motion planning on a

sloped surface. Finally, Section 6 summarizes the paper

and discusses future work.

2 Kinematic, Dynamic and Power Models

This section discusses the kinematic, dynamic, and

power models of a skid-steered wheeled vehicle that

are key to dynamically feasible, energy efficient motion

planning and trajectory following control.

2.1 Kinematic Model

As shown in Fig. 1, consider a skid-steered wheeled ve-

hicle moving at constant velocity (i.e., vy and Ψ̇ are

constant) about an instantaneous center of rotation

(I.C.R.). The local coordinate frame, which is attached

to the body center of gravity (CG), is denoted by x−y,

where x is the lateral coordinate and y is the longi-

tudinal coordinate. When a skid-steered wheeled vehi-
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cle rotates, the inner side wheels of the vehicle expe-

rience longitudinal skidding or slipping depending on

the turn radius, while the outer side wheels experience

longitudinal slipping. The lateral sliding velocity vx is

relatively small Mandow et al (2007), Martnez et al

(2005), Moosavian and Kalantari (2008) and, hence, is

neglected (vx = 0). For vehicles that are symmetric

about the x and y axes, an ideal symmetric experimen-

tal kinematic model of a skid-steered wheeled vehicle

Mandow et al (2007) is given by[
vy
ψ̇

]
=

r

αB

[
αB
2

αB
2

−1 1

] [
ωl
ωr

]
, (1)

where vy is the vehicle velocity in the forward direction,

ψ̇ is the vehicle angular velocity, B is the vehicle width,

r is the wheel radius, α is a terrain-dependent param-

eter, and ωl and ωr are the angular velocities of the

left and right wheels, respectively. Therefore, the kine-

matic model of a skid-steered wheeled vehicle of width

B is equivalent to the kinematic model of a differential-

steered wheeled vehicle of width αB.

The kinematic model of (1) is used in the develop-

ment of the dynamic model described in the next sec-

tion. In addition, for vehicle control the inverse of this

model is used to determine the desired wheel velocities

ωl and ωr, given vy and ψ̇.

Fig. 1 A skid-steered vehicle performing a circular turn at
constant velocity.

2.2 Dynamic Model

The dynamic model was originally presented in Yu et al

(2010) and is based on the experimentally verified ‘ex-

ponential friction model’ (Wong and Chiang (2001),

Wong (2001)) (i.e., the shear stress varies exponentially

with respect to shear displacement) to model the inter-

action of a skid-steered wheeled robot with the ground.

Later, the model was extended to 3D by Ordonez et al

(2012b). The model not only gives more accurate pre-

dictions of the applied motor torques but is also valid

for all turning radii in comparison to models developed

using Coulomb friction (in which the shear stress is as-

sumed to be constant) (Caracciolo et al (1999), Ko-

zlowski and Pazderski (2004)), which are valid only for

large turning radii. It should be noted that the expo-

nential friction model is accurate only for small accel-

erations (Yu et al (2010)). However, for energy efficient

motion planning, high accelerations and decelerations

are generally minimized (Barili et al (1995), Mei et al

(2004), Mei et al (2006)). Thus, the model is appropri-

ate for the motion planning task considered here.

In Yi et al (2007), a functional relationship between

the coefficient of friction and longitudinal slip is used

to present a ground-wheel interaction. The function is

further used to develop a dynamic model of skid-steered

wheeled vehicle. Also, to enable the robot to follow a

desired trajectory, an adaptive controller is designed.

The inputs of the dynamic model are the longitudinal

slip ratios of the four wheels. However, the longitudi-

nal slip ratios are difficult to measure in practice and

depend on the terrain surface, instantaneous radius of

curvature, and vehicle velocity. In addition, no experi-

ment is conducted to verify the reliability of the torque

prediction from the dynamic model and motor satura-

tion, and power limitations are not considered. In Yi

et al (2009), the dynamic model from Yi et al (2007)

is used to explore the motion stability of the vehicle,

which is controlled to move with constant linear veloc-

ity and angular velocity for each half of a lemniscate to

estimate wheel slip. As in Yi et al (2007), no experi-

ment is carried out to verify the fidelity of the dynamic

model.

Following Yu et al (2010), the dynamic model for a

skid-steered wheeled vehicle can be expressed as

Mq̈ + C(q, q̇) +G(q) = τ, (2)

where M is the mass matrix, C(q, q̇) is the resistive

term, G(q) is the gravitational term, q = [θi θo]
T is

the angular position of the inner and outer side wheels

respectively, q̇ = [wi wo]
T is the angular velocity of the

inner and outer wheels, and τ = [τi τo]
T is the torque

of the inner and outer motors. In this work the vehicle

is assumed to be moving at constant velocity, which

yields Mq̈ = 0. Also, note that if the vehicle is moving

counterclockwise about an I.C.R., then the inner wheel

is the left wheel and the outer wheel is the right wheel.

The converse is true if the vehicle is moving clockwise

about an I.C.R. (i.e., inner = right and outer = left).

The resistive term C(q, q̇) of (2) captures the ve-

hicle’s ground-wheel interaction, which is based on the
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relationship between shear stress τss and shear displace-

ment j given by (Wong and Chiang (2001))

τss = pµ(1− e−j/K), (3)

where p is the normal pressure, µ is the coefficient of

friction, and K is the shear deformation modulus. It

is then possible to compute the longitudinal frictional

forces on each side of the vehicle by integrating (3) over

the contact patch of each wheel (shaded areas in Fig.

1).

The vehicle in Fig. 1 is assumed to have wheels of ra-

dius r, wheel base L, track width B, and wheel contact

patches of size pl × b. The contact patches were mea-

sured using the Tekscan pressure measurement system

(Tekscan (2010)), which employs an array of pressure

sensors placed under the tire to generate a profile of its

imprint on the surface. Although the actual shape of

the contact patch is elliptical, it can be closely approx-

imated by a rectangular shape. This assumption may

be violated when the vehicle has large accelerations or

if it is moving in rough, 3D environments. These situa-

tions are not considered in this paper. In addition, the

tire pressure was maintained constant at 20psi causing

the tire to exhibit negligible deformation for the pay-

loads considered in the study. Therefore, the size of the

contact patches can be assumed constant for all experi-

ments. Assuming that the vehicle is symmetric and that

it turns with constant angular velocity ψ̇ about an in-

stantaneous center of rotation (I.C.R.) (see Fig. 1), it

is possible to compute the longitudinal frictional forces

for the inner (Fi) and outer (Fo) sides by integrating

(3) over the contact patch area of each wheel such that

Fi =

∫ L+pl
2

L−pl
2

∫ b

2

− b

2

pifµi(1− e−jif/K) sin(π + γi)dxidyi

+

∫ −L−pl
2

−L+pl
2

∫ b

2

− b

2

pirµi(1− e−jir/K) sin(π + γi)dxidyi,

(4)

Fo =

∫ L+pl
2

L−pl
2

∫ b

2

− b

2

pofµo(1− e−jof/K) sin(π + γo)dxodyo

+

∫ −L−pl
2

−L+pl
2

∫ b

2

− b

2

porµo(1− e−jor/K) sin(π + γo)dxodyo,

(5)

where subscript o and i represent the inner and outer

side and subscript r and f represent the rear and front

end of the vehicle such that jir reads as the wheel’s

shear displacement for the inner-rear side of the vehicle.

The variables γi and γo denote the angles between the

resultant sliding velocities of the inner and outer wheels

and the lateral direction of the vehicle. For details on

the computation of (4) and (5) please refer to Ordonez

et al (2012b).

Fig. 2 Skid-steered vehicle moving on a slopped terrain.

The resistive torque C(q, q̇) has an additional com-

ponent due to the rolling resistance and friction in

the motor bearings and other components that make

up the drive system. The friction in the drive system

[τi,res τo,res]
T is experimentally determined by elevat-

ing the robot so that its wheels lose contact with the

ground and measuring the motor torques while main-

taining a constant linear speed. The rolling resistance

forces [Ri Ro]
T are determined by measuring the motor

torques while the vehicle is moving in a straight line at

a constant forward velocity and then subtracting the

drive system friction [τi,res τo,res]
T .

It follows from the above analysis that the total re-

sistance term C(q, q̇) can be expressed by

C(q, q̇) = r

[
Fi +Ri
Fo +Ro

]
+

[
τi,res
τo,res

]
. (6)

Furthermore, when traversing slopes as shown in

Fig. 2, it is also necessary to overcome the gravitational

term G(q), which can be derived by performing a force

and moment balance as

G(q) =
rW sin θ cosψ

B

[
B

2
,
B

2

]T
, (7)

where W is the weight of the vehicle, θ is the slope

of the terrain, and ψ is the angular orientation of the

vehicle.

For a more detailed explanation of the dynamic

model presented here, please refer to Ordonez et al

(2012b).

2.3 Power Model

This section describes the power model used in the

study along with its integration with respect to time to

compute the energy consumption of an AGV for a par-

ticular trajectory. The model was originally presented
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Fig. 3 The circuit diagram for the left and right side of a
skid-steered wheeled vehicle.

in Collins et al (2011),Yu et al (2011) and uses the gen-

eral dynamic model described in Section 2.2.

The power model, presented in Collins et al (2011),

uses separate power models for the left and right side

motors. It should be noted that left side wheels are

coupled together and mechanically connected to the left

side motor. Similarly, the right side wheels are coupled

together and connected to the right side motor. The

equivalent circuit describing the left and right side drive

system and motors can be seen in Fig. 3. The circuit

includes a battery, a motor controller, a motor, and

the motor electrical resistance Re for each side of the

motor. In Fig. 3, ωl and ωr are the angular velocities of

the left and right wheels, and il and ir are the currents

of the left and right circuits. The vehicle is assumed

to be turning CCW and have a turning radius larger

than half the width of the vehicle so that ωl and ωr are

always positive.

The power model of a DC motor is given by

Pm = ωmτ +RmI
2
m, (8)

where ωm is the motor angular velocity, τ is the torque

output of the motor, Rm is the motor electrical resis-

tance, and Im is the current through the motor. The

first term on right side of (8) is the mechanical power

consumption, which includes the power to compensate

the left and right sliding frictions and the moment of

resistance along with the power to accelerate the motor,

while the second term is the electrical power consump-

tion due to the motor resistance dissipated as heat.

It should be noted that this study used DC brushed

motors as the vehicle actuators; hence electrical power

consumption plays a major role in the power model.

However, if different actuators are utilized, one has to

change the electrical portion of the power model ac-

cordingly.

Using (8) and the motor torque-current relationship,

τ = KT i, the power consumption for the left and right

motors Pl and Pr, having efficiency ηl and ηr respec-

tively, can be expressed as

Pl =
τlωl
ηl

+ (
τl

KT grηl
)2Re, (9)

Pr =
τrωr
ηr

+ (
τr

KT grηr
)2Re, (10)

where KT is the torque constant and gr is the gear ratio

of the motor. Let P denote the power that must be

supplied by the motor drivers to the motors to enable

the motion of a skid-steered wheeled vehicle and define

the operator σ : R→ R such that

σ(Q) =

{
Q : Q ≥ 0

0 : Q < 0.
(11)

Then the entire power model of a skid-steered wheeled

vehicle is

P = σ(Pr) + σ(Pl). (12)

Typically, one might expect to write P = Pr + Pl.

However, it turns out that Pl can be negative when the

torque applied by the left side motor is zero and the left

wheel is rotated due to the torque applied to the right

wheel and the coupling of the system dynamics. This

causes power generation on the left side of the vehicle.

The power generated does not charge the battery in

our research vehicle, thus the more general form (12)

is used. To enable the battery to be charged requires

modifications of the motor controller, which was not

done in this research. For a more detailed power model

please refer to Collins et al (2011).

The above analysis reveals that P = P (τ), i.e., the

total power consumption is a function of τ , the vector of

motor torques, which is determined using the dynamic

model (2). Given P (τ), the energy consumption E for

the vehicle in the time interval [to tf ], where to is the

start time and tf is the final time, may be computed as

E =

∫ tf

to

P (τ)dt. (13)

3 Sampling Based Model Predictive

Optimization (SBMPO)

Fig. 4 Portion of a graph tree resulting from the SBMPO
sampling process and model integration.
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SBMPO is a sampling-based algorithm for motion

planning. It is based on sampling the inputs to a kine-

matic or dynamic model and integrating the model to

build a tree, as illustrated by Fig. 4. A* optimization

is used to find the optimal tree path, providing the op-

timal trajectory based on the cost function provided.

SBMPO has been demonstrated as an effective and ef-

ficient trajectory planning technique for autonomous

underwater vehicles (AUVs) Caldwell et al (2010),

ground-based mobile robots Ordonez et al (2012b), Or-

donez et al (2013), legged robots Ordonez et al (2012a)

and robotic manipulators Chuy et al (2013). The effi-

ciency of SBMPO is closely linked to the development

of an appropriate optimistic A* heuristic. Also, Reese

(2015) proves the important theorem that “upon termi-

nation, the SBMPO algorithm will produce a path of

nodes representing the minimal cost trajectory among

those represented by the graph.” For energy efficient

motion planning, this paper describes an optimistic

heuristic cost function based on energy that facilitates

the efficient computation of energy efficient trajectories.

Fig. 5 shows the block diagram of a trajectory plan-

ning strategy that uses SBMPO. The models, cost eval-

uation, and heuristic are supplied by the user. The in-

puts to either the kinematic model or dynamic model

are sampled and that model is the one integrated by

SBMPO. The remaining models (including the obsta-

cle map) are represented as constraints that enable un-

acceptable states to be eliminated. In the dynamically

feasible, energy efficient motion planning considered in

this research, a simple kinematic model that maps the

longitudinal and angular velocities to the vehicle posi-

tion and orientation (see Section 3.2) is the integration

model and the minimum turn radius constraints (see

Section 3.3) represent the dynamic model. The devel-

oped strategy can be used for any given mobile plat-

form as long as its kinematic and dynamic models are

defined, and its energy cost can be computed for the

given path. Preliminary results for applying this strat-

egy to energy efficient motion planning of RHex-type

robots is given in Ordonez et al (2012a).

It should be noted that in the SBMPO algorithm,

a graph is created from start to goal and each vertex

on the graph keeps track of the states of the system,

the control input, and cost associated with the state.

For detailed information, please refer to Dunlap et al

(2010) and Dunlap et al (2011b).

3.1 SBMPO Algorithm

The following are the main steps of SBMPO:

Fig. 5 Trajectory planning using Sampling Based Model
Predictive Optimization (SBMPO).

1. Select a node with highest priority in the queue: The

nodes are collected in an Open List, which ranks

the potential expansion by their priority or low cost

associated with the node. The Open List is imple-

mented as a heap so that the highest priority node

that has not been expanded is on top. If the selected

node is the goal, SBMPO terminates, otherwise go

to step 2. Note that the node representing the start

will have the highest initial priority.

2. Sample input space: Generate a sample of the input

to the system that satisfies the input constraints.

The input sample and current state (i.e., the state of

the selected node) are passed to the system model,

and the system model is integrated to determine the

next state of the system. If the next state satisfies

all constraints, then continue to Step 3, else repeat

Step 2.

3. Add new node to the graph: Use an implicit grid

Ericson (2005) to check if the graph already contains

a node close to the new state of the system. If such

a node exists, only add an edge from the current

node (i.e., the selected node) to the node whose state

is similar to the new state. Otherwise, add a node

whose state is the next state.

4. Evaluate new node cost : Use an A* heuristic to eval-

uate the cost of the generated vertices based on the

desired objective (which is least amount of energy).

Add a new node to the priority queue based on the

minimum cost.

5. Repeat 2−4 for n successors: Steps 2−4 are repeated

for n successors, where n, the branchout factor, is

defined by the user.

6. Repeat 1−5 until one of the stopping criteria

is true: Steps 1−5 are repeated until the goal

region is reached or the maximum number

of allowable iterations is achieved. It should

be noted that though the SBMPO is based

on A* search algorithm, once the goal region
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has been reached, irrespective of unexplored

nodes still available in the priority queue, the

planner stops. This is done in order to make

the SBMPO computationally efficient and ef-

fective online. Due to this reason the final

path is sub-optimal.

3.2 Model used in SBMPO

Referring to the upper right hand block in Fig. 5, this

section discusses the simple kinematic model used by

SBMPO. Since, in this study vy is kept constant, sam-

pling ψ̇ and using a simple kinematic model provides

the vehicle position in the global space by SBMPO.

It is assumed that the vehicle states are sampled with

fixed time period T . Then, the position [XG, YG] and

orientation θG of the vehicle in the global space is given

by

θG,k = θG,k−1 + ψ̇kT,

XG,k = XG,k−1 + vy cos(θG,k)T,

YG,k = YG,k−1 + vy sin(θG,k)T, (14)

where k is the time index for the current state. SBMPO

uses this model to evaluate the vehicle cost and posi-

tion in the global space for the α corresponding to the

surface under consideration.

3.3 Dynamic Constraints

Fig. 6 A skid-steered vehicle (the FSU-Bot) moving on a
flat asphalt surface while being tracked by a Vicon motion
capture system.

Referring again to the upper right hand block in Fig.

5, this section describes the minimum turn radius con-

straints derived from the dynamic model. For a given

surface, (constant) vehicle speed, and vehicle payload,

the dynamic model (2) can be used to generate curves

that show the torque of the inner and outer motors as a

function of the turn radius Yu et al (2010). Examples of

these curves for the FSU-Bot of Fig. 6 are the analytical

Fig. 7 Torque vs. Turn Radius curve for the FSU-Bot mov-
ing at a constant forward velocity of 0.2m/s with no payload
on a flat wooden surface. The minimum turn radius (MTR)
for no payload is 1.5m.

curves shown in Fig. 7. Since the motors have torque

limitations, illustrated by the solid horizontal line in

Fig. 7, any turn radius less than the radius correspond-

ing to the intersection of that line and the analytical

curve (for the outer side motor) is unachievable. This

turn radius is denoted the minimum turn radius (MTR)

and is the radius corresponding to the small square in

Fig. 7. This results in the constraint

R ≥MTR. (15)

Note that the MTR will increase as the surface friction

or payload increases. Also, for a given skid-steered vehi-

cle, it is possible for the MTR to be zero. For example,

this can occur if the motors are sufficiently powerful

and the vehicle payload is sufficiently small.

For implementation of the MTR constraint in

SBMPO, the turn radii corresponding to the sampled

nodes were computed and the nodes corresponding to

the infeasible turn radii were rejected. The turn radius

between any two nodes (see Fig. 4) is assumed to be

constant at the value it has at the child node. (This is an

approximation, which is needed for real time implemen-

tation.) Let k denote the current time, corresponding

to the parent node, such that k + 1 is the time corre-

sponding to any of the child nodes. Consider the child

node corresponding to the ith sample (of n samples). It

has angular velocity denoted by ψ̇k+1,i and linear ve-

locity vy (since it is assumed that the linear velocity is

vy throughout the trajectory). The turn radius between

these two nodes, denoted by Rk→k+1,i, is then given by

Rk→k+1,i =
vy

ψ̇k+1,i

. (16)
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3.4 Cost Evaluation and Heuristic for Energy Efficient

Planning

The elements of Fig. 5 that must be chosen for energy

efficient motion planning are the cost function and the

corresponding heuristic. An expression for the energy

consumption E has already been given by (13) in terms

of P (τ). However, since τ depends on the vehicle turn-

ing radiusR and orientation (in case of slopped terrain),

and both vary continuously, it is not generally feasible

to perform the integration of (13) in real time.

Referring to (13), let k = 0 correspond to to, the

time of the start node, and k = N correspond to tf ,

the time of the current node. Then the energy cost E

for the trajectory from the start node to the current

node can be approximated by

E =

N∑
k=0

PkT, (17)

where T is the constant sample time and Pk is the power

needed to move from the node at time k to the node at

time k + 1, assuming that, following the derivation of

(16), for angular velocity ψ̇k+1 and linear velocity vy the

radius of curvature is given by Rk→k+1 = vy/ψ̇k+1. For

efficient implementation with SBMPO, tables display-

ing power P vs. turn radius R for various payloads were

generated using the dynamic and power model respec-

tively described in Sections 2.2 and 2.3. These tables

are then used to determine the power terms Pk in (17)

as a function of the turn radius Rk→k+1.

The heuristic cost is computed as follows. Let D

denote the straight line distance from the current node

to the goal node and let t denote the time needed to
move the distance D at the linear velocity vy, such that

t = D
vy
. Then, an optimistic heuristic H is given by

H = P∞t+mgh, (18)

where P∞ denotes the power consumption correspond-

ing to linear motion (i.e., R =∞) on flat ground, m is

the mass of the vehicle, g is the gravity constant, and h

is the vertical height of the goal from the vehicle’s cur-

rent position in space. In most of the current study the

robot is moving on a flat surface, in which case h = 0.

3.5 Tuning of SBMPO

As with all motion planning algorithms, SBMPO has

parameters that require tuning to obtain efficient use

of the algorithm. The primary tuning parameters are

the dimension of the implicit grid in Step 3 of Sec-

tion 3.1 and the branchout factor, defined in Step 5

of that section. Each tuning parameter is non-linearly

dependent on the other and can have a significant ef-

fect on the computation time. For the implementation

of SBMPO used for the motion planning problems de-

scribed in Section 4, trial and error revealed that a grid

size of 0.005m and branch out factor of 20 tended to

give minimal computation times. Hence, these parame-

ters were used in each of the experiments of Section 4.

It should be noted that gridding was only implemented

for the x and y axes but not for the heading angle. Grid-

ding of the heading angle may be used if a constraint is

required for the final vehicle orientation, which is not

the case in this study.

4 Results and Discussion

This section compares distance optimal trajectories

with the corresponding energy efficient trajectories on

two different terrains, plywood1 (hereafter simply called

“wood”) and asphalt. The experimental platform is

the FSU-Bot, shown in Fig. 8, a skid-steered robot

that employs 2 mechanically coupled Pittman GM 9236

brushed DC motors per side. Each pair of motors is con-

trolled using a current control approach by a Maxon

motor controller (4-Q-dc). The motor controllers are

configured to provide a maximum current of 5A, which

corresponds to a maximum torque of 4.63Nm. The top

plate of the robot was modified to accommodate steel

bars of 2kg each as shown in Fig. 9. The added weight

corresponds to the robot payload and the payloads in

the experiments had increments of 4kg each; i.e., a 2kg

bar was added on each side of the vehicle, equidistant

from the center. The new modification helped to retain

the bars securely without significantly affecting the ve-

hicle’s center of mass in the horizontal plane, which

made the use of the dynamic model in the experiments

more convenient since the center of mass of the vehicle

did not have to be recomputed. All experiments were

performed at a constant tire pressure of 20psi. The key

parameters of the FSU-Bot are listed in Table 1. The

efficiency of the motor is estimated by taking the ratio

of average power output to average power input of the

motor. The power output of the motor is computed by

the force exerted by the rotation of the motor shaft on

the spring scale multiplied by the radius of the motor

shaft. The product of the applied voltage and current

drawn by the motor provided the power input. Though,

the efficiency of a DC motor varies with the operating

state of the motor, it is assumed to be constant in this

study.

1 A modular wooden surface was used because it can be
attached to a variable slope in the authors’ lab for future
experiments that focus on sloped surfaces
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Fig. 8 The FSU-Bot skid-steered wheeled robot used in the
study.

Fig. 9 The payload carrying plate design for the FSU-Bot
used in the study.

Table 1 Key parameters of the FSU-Bot

Vehicle
Mass (kg) m 23.2
Track width (m) B 0.39
Wheel base (m) L 0.27
Radius of tire (m) r 0.1075
Motor
Torque constant (Nm/A) KT 0.023
Speed constant (rad/sV) Kn 43.478
Gear ratio gr 49.8
Motor Electrical Resistance (Ω) Re 0.74
Motor Efficiency η 0.76
Wooden Surface
Expansion factor αwood 1.44
Outer wheel coefficient of friction µo 0.8806
Inner wheel coefficient of friction µi 0.5795
Shear deformation modulus (m) K 0.0013
Asphalt Surface
Expansion factor αasphalt 1.39
Outer wheel coefficient of friction µo 1.2165
Inner wheel coefficient of friction µi 0.8269
Shear deformation modulus (m) K 0.0016

4.1 Dynamic Model Verification

The FSU-Bot was commanded to move at 0.2m/s con-

stant forward velocity on each surface for various turn

radii to estimate the terrain dependent surface param-

eters for the dynamic model discussed in Section 2.2.

A total of 3 runs were performed for each turn ra-

dius and the motor torques for the outer and inner

vehicle sides were measured by monitoring the current

through the motors. The robot with no payload was

commanded to move on both the wood and asphalt

surfaces. The terrain dependent parameters (µo, µi, and

K) were estimated by fitting (in the least squares sense)

the proposed model to the experimental torques (shown

in Fig. 7), yielding µo = 0.8806, µi = 0.5795, and

K = 0.0013 for the flat wooden surface. It should

be emphasized that the surface parameters obtained

here were estimated for the no payload case. The solid

black line in Fig. 7 represents the maximum torque

limit of the vehicle (4.63Nm) of one of the vehicle’s

motors. A Vicon motion capture system was used to

track the vehicle motion and estimate the expansion

factor as discussed in Section 3.2. For the FSU-Bot

moving on the flat wooden surface at 0.2m/s with

no payload the expansion factor was estimated to be

α = 1.44. The estimated surface parameters for asphalt

were µo = 1.2165, µi = 0.8269, and K = 0.0016 with

an expansion factor α = 1.39.

Table 2 Minimum turn radius (MTR) constraint depending
on terrain type and payload

Terrain
Surface

Payload MTR
Parameters
(µo, µi, K) (Kg) (m)

Wood (0.8806, 0.5795, 0.0013)

0 1.5
4 2.0
8 2.5
12 3.0

Asphalt (1.2165, 0.8269, 0.0016)

0 2.0
4 2.5
8 3.0
12 4.0

Later, using the surface parameters and the expan-

sion factor corresponding to motion with no payload

on a wooden surface, the model was used to predict the

torques and minimum turn radius dynamic constraints

for 4kg, 8kg and 12kg payloads. For both the wood and

asphalt surfaces, Table 2 summarizes the minimum turn

radius dynamic constraints for the FSU-Bot with vari-

ous payloads. As shown in Figs. 10−12, the model was

able to accurately predict the effect of payload on the

vehicle torques and the MTR, which is shown by the
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Fig. 10 Torque vs. Turn Radius curve for the FSU-Bot mov-
ing at a constant forward velocity of 0.2m/s with 4kg payload
on a flat wooden surface. The minimum turn radius (MTR)
for a 4kg payload is 2.0m. (The surface parameters were esti-
mated for no payload, demonstrating good generalization of
the model to payload changes.)

Fig. 11 Torque vs. Turn Radius curve for the FSU-Bot mov-
ing at a constant forward velocity of 0.2m/s with 8kg payload
on a flat wooden surface. The minimum turn radius (MTR)
for an 8kg payload is 2.5m. (The surface parameters were es-
timated for no payload, demonstrating good generalization of
the model to payload changes.)

x-axis value corresponding to the point where the max-

imum torque line intersects the outer torque prediction

curve (shown in Figs. 10−12). For the FSU-Bot with no

payload moving on the wooden surface with a constant

forward velocity of 0.2m/s the predicted MTR is 1.5m.

As shown in Fig. 7, the experimental results verified this

value. With the increase in payload, the vehicle’s MTR

increases. For example, for a 4kg payload the predicted

and experimental MTR was 2m (see Fig. 10), whereas

for a 12kg payload it turns out to be 3m (see Fig. 12).

Fig. 12 Torque vs. Turn Radius curve for the FSU-Bot mov-
ing at a constant forward velocity of 0.2m/s with a 12kg
payload on a flat wooden surface. The minimum turn radius
(MTR) for 12kg payload is 3.0m. (The surface parameters
were estimated for no payload, demonstrating good general-
ization of the model to payload changes.)

4.2 Motion Planning Simulation Results

Simulations were performed to compare the distance

and energy requirements of dynamically feasible, en-

ergy efficient trajectories with those of the correspond-

ing distance optimal trajectories. Below, “energy effi-

cient motion planning” refers to motion planning that

both optimizes an energy cost function and enforces

the MTR constraint. Hence, an “energy efficient tra-

jectory” is also dynamically feasible (i.e., it meets the

MTR constraint). The simpler language is used for ease

of presentation.

In this research, distance optimal trajectories were

computed using SBMPO along with the kinematic

model discussed in Section 3.2. The cost function used

for distance optimal motion planning was the distance

traveled and the heuristic was the Euclidean distance.

Since traditional distance optimal motion planning does

not exploit the dynamics of the vehicle, no dynamic

constraints (i.e., MTR constraints), were considered

for those trajectories, such that it was assumed that

the vehicle could provide all the actuation required to

negotiate a given trajectory’s turns. Hence, the tra-

jectories were not all necessarily dynamically feasible,

i.e., they may violate the MTR constraints (and often

did). However, even in this case, the energy predictions

are indicative of the energy consumption of a vehicle

that has more powerful motors. These results are im-

portant since it appears that skid steered vehicles are

sometimes designed with extremely powerful motors for

which MTR constraints may not exist under many cir-

cumstances (i.e., payloads and terrain surfaces).



Energy Efficient Motion Planning 11

The simulations involved various scenarios, charac-

terized by the initial position and orientation of the

vehicle, the location of the goal, and the obstacle con-

figuration (if any). However, due to space limitations

only three of them are discussed in detail. Statistics

based on all of the performed simulations are described

at the end of this section. In each simulation, the robot

was assumed to move at a constant forward velocity

of 0.2m/s on a 7m× 7m wooden surface. As shown in

Figs. 13−15, the goal region is represented by a solid

(blue) circle centered at the goal location and having a

radius of 0.3m. Table 3 shows the computed results for

total energy and path length and their comparison.

Fig. 13 Simulated motion planning results for Scenario 1
with 0◦ initial heading with respect to the x-axis, start at
(0.5, 0.5)m, goal at (6.5, 6.5)m, and a constant forward veloc-
ity of 0.2m/s on a flat wooden surface. The distance optimal
trajectory did not change with the variation in payload and
always made an initial sharp turn to orient the vehicle to-
wards the goal and minimize the distance. The energy optimal
trajectory avoided sharp turns to avoid unnecessary energy
consumption. As the payload increased the energy optimal
trajectory made wider turns.

The planning is first performed for an obstacle free

environment (Scenario 1) using both distance and en-

ergy optimization for various payloads. For Scenario 1,

the robot was assumed to move from start position

at (0.5, 0.5)m with an initial heading direction of 0◦

with respect to the x-axis to the goal region centered

at (6.5, 6.5)m. As shown in Fig. 13, for distance op-

timal motion planning the vehicle made a sharp turn

in the beginning and then moved in a straight line to-

wards the goal. For no payload energy efficient motion

planning, the vehicle avoided sharp turns and moved

along an arc towards the goal. However, as the pay-

load increased, the vehicle followed a wider turn. The

predicted total energy consumption for the no payload

distance optimal trajectory was 361J , whereas for the

Fig. 14 Simulated motion planning results for Scenario 2
with 0◦ initial heading with respect to the x-axis, start at
(0.5, 0.5)m, goal at (6.5, 6.5)m, no payload, and a constant
forward velocity of 0.2m/s on a flat wooden surface. The dis-
tance optimal trajectory made sharp turns to minimize the
distance to reach the goal. In contrast, the energy optimal
trajectory made wide turns to avoid the high energy con-
sumption associated with the sharp turns.

Fig. 15 Simulated motion planning results for Scenario 3
with 90◦ initial heading with respect to the x-axis, start at
(2.0, 0.5)m, goal at (6.0, 6.5)m, no payload, and a constant
forward velocity of 0.2m/s on a flat wooden surface. As in
Fig. 14, in this scenario also the distance optimal trajectory
made sharp turns to minimize the distance to reach the goal.
In contrast, the energy optimal trajectory made wide turns to
avoid the high energy consumption associated with the sharp
turns.

no payload energy efficient trajectory it was 461J . It

should be noted that for the distance optimal motion

planning of Scenario 1 the vehicle made a sharp turn

(violating the MTR constraint) for a small time and

then moved straight for the rest of the trajectory. This

resulted into a lower energy consumption as compared

to the energy efficient trajectories for various payloads.

Energy efficient trajectories made sure that the MTR
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Table 3 Simulation results for motion planning

Scenario Planning
Comp. Time Path Length Path Difference? Energy Energy Difference?

(s) (m) (%) (J) (%)

2.
Min. Dist. 0.5554 8.9

6.71
1276

33.07
Min. Energy 0.8798 9.5 854

3.
Min. Dist. 0.5664 7.3

1.35
935

47.70
Min. Energy 0.186 7.4 489

?The path and energy differences are computed with respect to minimum distance motion planning.

constraint is not violated, which sometimes can result

in higher energy consumption compared to a distance

optimal trajectory.

Motion planning results for Scenarios 2 and 3 in-

volved obstacles and are shown respectively in Figs. 14

and 15. For Scenario 2, the robot start position was

(0.5, 0.5)m with the goal region centered at (6.5, 6.5)m.

However, for Scenario 3, the robot start position was

(2.0, 0.5)m with the goal region centered at (6.0, 6.5)m.

It should be noted that as mentioned in section 3.1,

SBMPO terminates once the goal is reached irrespec-

tive of the unexplored nodes still available in the prior-

ity queue. Due to this along with the limitation of sam-

pling method the trajectories shown in Figs. 14 and 15

are sub-optimal. Provided the algorithm was made to

run till the priority queue is emptied out the trajecto-

ries would be more optimal. The corresponding results

of Table 3 reveal that for a small increase in distance,

the energy based planning is able to dramatically de-

crease the energy consumption. For example, for Sce-

nario 2 of Fig. 14, a 6.7% increase in distance led to a

33.1% decrease in energy consumption, while for Sce-

nario 3 of Fig. 14, a 1.4% increase in distance led to a

47.7% decrease in energy consumption.

Trajectories were designed for the robot’s movement

on the 7m × 7m wooden surface for a total of 14 sce-

narios. The payload was varied from 0kg to 12kg in

increments of 4kg. The start and goal location of the

robot were varied randomly with randomly placed ob-

stacles, varying in number from 2 to 8. The orientation

of the robot was selected as either 0◦ or 90◦ with respect

to x-axis. In each of the simulation results, the distance

optimal motion planning violated the MTR constraint.

(It is certainly possible for the distance optimal plan-

ning to not violate the MTR constraint, for example if

the vehicle is initially pointed towards the goal, in which

case it will move in a trajectory with very large radii

of curvature; however, the experiments cited here did

not involve this situation.) In contrast energy efficient

motion planning enforced the MTR constraint and re-

duced the energy consumption by an average of 38.85%

while increasing the distance traveled by an average

of only 4.3%. Furthermore, the average computational

time for computing a distance optimal trajectory was in

the range [0.007, 0.566]sec and averaged 0.171sec, while

the computational times for the energy efficient trajec-

tories were in the range [0.007, 1.635]sec and averaged

0.217sec. Although the energy efficient trajectories had

the higher average computational time, for a given sce-

nario they were not always more computationally ex-

pensive. The higher times appeared to be due to the

enforcement of the MTR constraints, which sometimes

forced SBMPO to search the input space more in or-

der to find an input leading to a feasible trajectory.

However, the MTR constraint can also cause the vehi-

cle to find a trajectory that avoids obstacles, instead of

weaving through them, which can lead to smaller com-

putational times.

4.3 Experimental Results for a Wooden Surface

This section describes and discusses the results of ex-

periments conducted on a 7m×7m flat wooden surface.

Each of the energy efficient trajectories and each of the

distance optimal trajectories, corresponded to the FSU-

Bot moving at a constant forward velocity of 0.2m/s.

The experimental results discussed here2 and below in

Section 4.4 (for movement on asphalt) highlight the im-

portance of the MTR constraint, since it cannot be ig-

nored as it was in the simulation results of the previous

section. In particular, they provide concrete illustration

of the difficulties in attempting to track trajectories

designed without taking into account this constraint.

They also give insight into the accuracy of the energy

consumption predicted by the power model.

The tracking results for the robot are shown in Figs.

16−18 for Scenario 2, and in Figs. 19−21 for Scenario 3.

Figs. 16 and 19 show the position tracking of the robot

using a Vicon motion capture system for both distance

optimal and energy efficient trajectories. Figs. 18 and

21 show the velocity tracking and torque measurement

of the robot while executing the energy efficient trajec-

2 This paper has supplementary downloadable material
(Motion planning.zip) showing the motion planning results
for movement on both wood and asphalt surfaces as presented
in this paper.
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Fig. 16 Motion planning results for Scenario 2 with 0◦ initial
heading with respect to the x-axis, start at (0.5, 0.5)m, goal
at (6.5, 6.5)m, and no payload (E represents energy optimal
trajectories and D represents distance optimal trajectory.)
The experiments was conducted on a flat wooden surface with
a commanded constant forward velocity of 0.2m/s. The robot
was not able to track the distance optimal trajectory and
headed away from the goal. For the energy optimal trajectory,
the tracking was good and the robot was able to reach the
goal.

tories of Scenarios 2 and 3, respectively. As shown in

these figures, the robot was able to properly track the

energy efficient trajectories. The experimental results

are shown in Table 4 along with the simulated results.

For distance optimal trajectories, the robot trajectory

tracking was significantly off. As shown in Figs. 17 and

20, most of the time the robot actuators were saturated,

causing poor velocity and position tracking as seen in

Fig. 16 for Scenario 2 and Fig. 19 for Scenario 3. In

Table 4, some cells are labeled as “N.A.”, indicating

that the vehicle did not complete the mission by either

hitting an obstacle or moving significantly off course.

The experiments were further extended to study the

effect of payload on the motion planning task. In Sce-

nario 4, the robot was first commanded with a no pay-

load, energy efficient trajectory. As can be seen from

Fig. 22, the robot was able to closely track the trajec-

tory with an actual energy consumption of 348J and a

predicted energy consumption of 471J . The robot was

then commanded with the same trajectory but while

carrying a payload of 8kg. The position tracking re-

sults are shown in Fig. 22 with velocity tracking and

torque measurements in Fig. 23. As can be seen from

Fig. 23 the actuators of the robot were saturated, caus-

ing poor velocity tracking and leading to collision with

an obstacle. However, when the robot having an 8kg

payload was commanded with an 8kg energy efficient

trajectory, it was able to avoid obstacles and reach the

goal. It should be noted that the small error in the fi-

Fig. 17 Velocity tracking and torque measurement results
for the distance optimal trajectory shown in Fig. 16. The
vehicle was not able to track the velocity due to torque sat-
uration.

Fig. 18 Velocity tracking and torque measurement results
for the energy optimal trajectory shown in Fig. 16. The ve-
hicle was able to avoid saturating the two actuators and had
good velocity tracking.

nal position of the robot could be due to an error in the

initial orientation of the robot.

Fig. 24 shows the percentage error in the energy

prediction for 17 combinations of payloads and obsta-

cle configurations for energy efficient motion planning

on wood and asphalt. For each scenario, the error was

averaged over three experimental runs. As can be seen

in the Fig. 24 , the maximum error was −35.25%,

the minimum error was −5.90%, and the mean error

was −19.88% for the different scenarios. This over-

prediction of energy consumption is partly due to the

fact that the predicted torques tend to be greater than

the experimental torques as evidenced in Figs. 7−12,

leading to an over-prediction of power. Integration of

the small error in power over time leads to significant

errors in the prediction of energy. The higher errors
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Fig. 19 Motion planning results for Scenario 3 with 90◦ ini-
tial heading with respect to the x-axis, start at (2.0, 0.5)m,
goal at (6.0, 6.5)m, and no payload (E represents energy op-
timal trajectories and D represents distance optimal trajec-
tory.) The experiment was conducted on a flat wooden surface
with a commanded constant forward velocity of 0.2m/s. The
robot was not able to track the distance optimal trajectory
and headed away from the goal. For the energy optimal tra-
jectory, the tracking was good and the robot was able to reach
the goal.

Fig. 20 Velocity tracking and torque measurement results
for the distance optimal trajectory shown in Fig. 19. The
vehicle was not able to track the velocity due to torque sat-
uration.

seen for the wooden surface are likely due to the an-

isotropic nature of this surface, which contrasts with

the relatively isotropic nature of the asphalt surface.

(Experimental results for the asphalt surface are dis-

cussed in Section 4.4.) It should be emphasized that

the dynamic model described in Section II-B assumes

an isotropic surface since the surface parameters (µo, µi
and K) are constant. To account for anisotropy, these

parameters must vary according to the vehicle orienta-

tion with respect to the surface. This makes the model

(and its use) more complex and in practice, would also

Fig. 21 Velocity tracking and torque measurement results
for the energy optimal trajectory shown in Fig. 19. The ve-
hicle was able to avoid saturating the two actuators and had
good velocity tracking.

Fig. 22 Motion planning results for Scenario 4 with 90◦ ini-
tial heading with respect to the x-axis, start at (0.5, 0.5)m,
goal at (6.5, 6.5)m, and various payloads (E represents en-
ergy optimal trajectories). The experiment was conducted on
a flat wooden surface with a commanded constant forward
velocity of 0.2m/s. The robot carried an 8kg payload but the
commanded energy optimal trajectory assumed no payload
and the robot was not able to track the trajectory and even
hit an obstacle.

require a perception system that can detect the grain

direction or other directional properties of the surface.

Table 4 shows the computational times for both dis-

tance optimal and energy efficient motion planning. As

can be seen from the table, the computational times for

energy efficient motion planning ranged from 0.011 sec

to 1.64 sec and were comparable with the correspond-

ing times (when they exist) for the distance optimal

trajectories.
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Table 4 Experimental results for motion planning

Scenario Planning
Comp. Time Path Length Pred. Energy Actual Energy Error

(s) (m) (J) (J) %

2.
Min. Dist. 0.5554 8.9 1276 N.A. N.A.

Min. Energy 0.8798 9.5 854 765.17 -11.61

3.
Min. Dist. 0.5664 7.3 935 N.A. N.A.

Min. Energy 0.186 7.4 489 387 -26.34

4.

Min. Energy.
Payload

Assumed Actual
0kg 0kg 0.0107 8.5 471 348 -35.25
0kg 8kg 0.0107 8.5 471 N.A. N.A.
8kg 8kg 1.6353 9.4 1122 927 -20.98

5.
Min. Dist. 0.042 11.46 843 N.A. N.A.

Min. Energy 0.125 12.06 507 439 -15.55

6.

Min. Energy.
Payload

Assumed Actual
0kg 0kg 0.1509 11.76 511 419 -21.96
0kg 8kg 0.1509 11.76 511 N.A. N.A.
8kg 8kg 0.024 12.48 749 622 -20.42

?N.A. = Not applicable if the vehicle hits an obstacle or headed away from the goal.

Fig. 23 Velocity tracking and torque measurement results
with the robot carrying an 8kg payload but commanded to
follow the 0kg payload energy optimal trajectory shown in
Fig. 22. The vehicle was not able to track the velocity due to
torque saturation.

4.4 Experimental Results for Asphalt Surface

The results of Section 4.3 were later extended to an

outdoor asphalt surface with the robot moving at the

higher speed of 0.6m/s. First, the dynamic model for

FSU-Bot was verified for a constant forward velocity of

0.6m/s and the results are shown in Fig 25. It should

be noted that the surface parameters were maintained

at the same values identified for the robot running at a

constant forward velocity of 0.2m/s on the asphalt sur-

face. Then, simulation and experimental motion plan-

ning was performed for the FSU-Bot running at a con-

stant forward velocity of 0.6m/s. The motion planning

Fig. 24 The graph of the error (
Eact−Epred

Eact
), where Eact

and Epred are respectively the actual and predicted energy
consumption, for the robot executing various energy optimal
trajectories on the wood and asphalt surfaces.

results for Scenario 5 and Scenario 6 are shown in Figs.

26 and 27, respectively and the computational time

comparison is shown in Table 4. The high quality of

the MTR and energy prediction results here strongly

suggests that the dynamic and power model have low

dependence on the vehicle speed.

Fig. 26 shows the position tracking of the FSU-Bot

while following the energy efficient and distance opti-

mal trajectories for Scenario 5 at a constant forward

velocity of 0.6m/s. As shown in this figure, the robot

was able to track the energy efficient trajectory. In con-

trast, while tracking the distance optimal trajectory,

the left actuator saturated during sharp turns, causing

the robot to hit an obstacle. The total actual energy for

the energy efficient trajectory was 439J as compared

to the total predicted energy of 507J with an error of
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Fig. 25 Torque vs. Turn Radius curve for the FSU-Bot with
no payload on a flat asphalt surface running at a constant
forward velocity of 0.6m/s. The expansion factor and sur-
face parameters were maintained at the same values as those
identified with no payload and a constant forward velocity of
0.2m/s. The minimum turn radius (MTR) for no payload is
2.0m.

Fig. 26 Motion planning results for Scenario 5 with 0◦ initial
heading with respect to the x-axis, start at (0.5, 0.5)m, goal
at (8.5, 8.5)m, and no payload (E represents energy optimal
trajectories and D represents distance optimal trajectory.)
The experiment was conducted on an asphalt surface with a
commanded constant forward velocity of 0.6m/s. The robot
was not able to track the distance optimal trajectory and
actually hit an obstacle. For the energy optimal trajectory,
the robot was able to track the trajectory and reach the goal.

−15.55%. Since the robot hit an obstacle while track-

ing the distance optimal trajectory of Scenario 5 (see

Fig. 26), the total actual energy measurement was not

applicable here.

Experiments were also conducted to test the effect

of payload while tracking the energy efficient trajectory

on the asphalt surface. First, the robot was commanded

to follow the energy efficient trajectory with no payload

Fig. 27 Motion planning results for Scenario 6 with 0◦ ini-
tial heading with respect to the x-axis, start at (0.5, 0.5)m,
goal at (8.5, 8.5)m, and various payload (E represents energy
optimal trajectories). The experiment was conducted on an
asphalt surface with a commanded constant forward velocity
of 0.6m/s. The robot carried an 8kg payload but was com-
manded to follow a 0kg payload energy optimal trajectory
and hit an obstacle.

for Scenario 6, as shown in Fig. 27. The total actual en-

ergy was 419J in comparison to the predicted energy

of 511J with an error of −21.96%. Then, the robot was

commanded with the same trajectory but having an ac-

tual payload of 8kg. As can be seen in Fig. 27, the robot

was not able to track the trajectory and eventually hit

an obstacle. However, when the robot having an 8kg

payload was commanded with an 8kg payload trajec-

tory, it was able to track the trajectory (shown in Fig.

27). The total actual energy was 622J in comparison

to the total predicted energy of 749J with an error of

−20.42%.

5 Extension to Motion Planning on Slopes

The results of Section 4.3 were limited to flat surfaces.

However, using the 3D dynamic model Ordonez et al

(2012b), the work presented here can be extended to

motion planning on slopes. The power model in (12) is

basically a function of torque, which for constant veloc-

ity motion on a given sloped terrain depends on vehicle

orientation and the turn radius. For energy efficient mo-

tion planning on a slope, the heuristic function of (18)

will have non-zero potential energy (mgh). Energy ef-

ficient motion planning can be achieved following the

same methodology developed earlier in the paper.

Fig. 28 shows a preliminary result for 3D energy ef-

ficient motion planning along with a comparison with

distance optimal motion planning on a 10◦ inclined

wooden surface. The robot was made to move from the

(0, 0, 0)m start position, an initial orientation θo = 90◦
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Fig. 28 Simulated motion planning results for a cluttered
environment with 90o initial heading with respect to the x-
axis, start at (0, 0, 0)m, goal at (5.0, 5.0, 0.87)m, and no pay-
load. The terrain has an inclination of 10o and the robot was
commanded with a constant forward velocity of 0.2m/s.

to the goal region, centered at (5.0, 5.0, 0.87)m, while

avoiding obstacles. As can be seen from the figure, for

the energy efficient trajectory, the robot avoided sharp

turns and moved as straight as possible. However, for

the distance optimal trajectory, the robot made a sharp

turn at the start point (0, 0, 0)m. The total energy con-

sumption for the energy efficient trajectory turned out

to be 802J for a total path length of 7.40m, whereas

for the distance optimal path it was 1271J for a total

path length of 7.18m. Hence, a 36.8% decrease in energy

consumption was achieved with only a 3.1% increase in

distance traveled.

6 Conclusions

This paper considered autonomous skid-steered

wheeled vehicles. The focus has been the efficient

computation and evaluation of trajectories that are

dynamically feasible (i.e., they obey a minimum turn

radius (MTR) constraint) and energy efficient. These

trajectories were compared in both simulation and

experiments with more standard distance optimal tra-

jectories. The results relied upon dynamic and power

models for skid-steered wheeled vehicles, discussed

respectively in Sections 2.2 and 2.3, and their use

with Sampling Based Model Predictive Optimization

(SBMPO), the motion planning algorithm of Section 3.

The key contributions are the validation of the models

for different payloads and speeds, their integration with

the planner and the insights that have been developed

in performing the simulations and experiments.

An interesting and useful experimental result, re-

vealed in Section 4.1, is that the surface parameters

appearing in the dynamic model of the vehicle, i.e., the

coefficients of friction for the inner and outer wheels (µi

and µo) and the shear deformation modulus K can be

experimentally identified when the vehicle is not car-

rying a payload, but will yield fairly accurate predic-

tions of torque when the vehicle is carrying a substan-

tial payload. Hence, these parameters do not have to

be re-identified when the vehicle’s payload increases.

The simulation results of Section 4.2 reveal partic-

ular insights for skid-steered vehicles that distance op-

timal trajectories, if they can be followed by the robot,

can be very energy consuming, primarily. In contrast

the dynamically feasible, energy efficient trajectories

tend to require the vehicle to have a slight increase

(an average of 4.3% in the simulations) in distance and

time traveled, but lead to a dramatic decrease (an av-

erage of 38.8% in the simulations) in energy consumed.

These results revealed that when energy conservation

for skid-steered autonomous ground vehicles is impor-

tant, for example, to increase a mission’s endurance,

energy efficient motion planning can be critical.

Because most of the distance optimal trajectories

violated the corresponding MTR constraint, the exper-

imental results of Section 4.3 particularly highlighted

the importance of enforcing these constraints in order

to enable successful trajectory tracking. Without this

enforcement, it is easy to develop trajectories that the

vehicle simply cannot follow. It is pertinent to empha-

size that in our control system, the company-specified

current (i.e., torque) limits of each of the vehicle’s two

motors is enforced by each motor’s controller. However,

it is possible to violate these current limits at the risk

of burning out one or more of the motors. Hence, if

the current limit was not rigorously enforced, the vehi-
cle may have been able to track the distance optimal

trajectories, albeit at great risk. The contention here is

that this would be very poor practice.

Initial simulation results were shown in Section 5

for energy efficient motion planning on a slope. A focus

of future work will be energy efficient planning in envi-

ronments with variable and slippery slopes. In such sce-

narios, it is expected that the current kinematic model

will have to be enhanced with more detailed slip models

such as those of Seegmiller et al (2013).

Other important areas of future work are mo-

tion planning for heterogeneous surfaces and rapid

re-planning of energy efficient trajectories. As is well

known, in a real world scenario a robot must update

its plans to take into account new environmental infor-

mation and differences between its current state and

predicted state. It is possible to develop and implement

an incremental version of SBMPO that will enable this

rapid re-planning and this work is underway.
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