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Abstract— Practical use of robots in diverse domains requires
programming for, or adapting to, each domain and its unique
characteristics. Failure to do so compromises the ability of the
robot to achieve task-relevant objectives. Here we describe how
the learned terrain reaction force profiles of a hopping robot
serve the additional objectives of classifying terrain and quickly
learning control strategies to accomplish a jumping task on
novel terrain. We show that the reaction forces experienced dur-
ing closed-loop jumping are sufficient to discriminate between
three different terrain types (granular, trampoline, and rigid)
when using the learned models as discriminators. Building on
this, we show that applying the classification to unknown terrain
types leads to faster task completion, where the task objective is
to meet a specific jump height. The classification experiments,
utilizing real-world jumping data, achieve 95% prediction
accuracy. The online learning experiments leverage simulation
as there is more control over the terrain properties. Terrain-
informed learning achieves the target hop heights more than 2x
faster than without terrain knowledge when the prediction is
correct, and 1.5x faster when the prediction is incorrect. Thus,
applying the closest approximately known terrain knowledge
facilitates low shot learning when hopping on unknown terrain.

I. INTRODUCTION

Legged robotic platforms are uniquely advantaged with
respect to their traditionally wheeled or tracked counter-
parts. In particular, the former are well-equipped to traverse
commonly-occurring environmental impediments and man-
made environmental features that the latter cannot. Accurate
models of robot-terrain interactions, however, are critical to
motion planning in legged systems–even small, uncorrected
errors may lead to catastrophic consequences. Despite the
availability of terradynamic models for describing terrain,
many environments remain undescribed or do not have a
priori known parameters, especially in the context of field
deployment. Missing terrain knowledge presents challenges
for competent application of legged robotic platforms in
many practical mission scenarios. This paper aims to address
the challenge of incomplete terrain information by employing
prior, approximate knowledge for fast, low-shot learning on
novel terrain.
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For bipedal and quadrupedal systems, incorrectly modeled
terrain forces can compromise critical stability criteria, lead-
ing to falls. For hexapodal systems, mismatch between actual
terrain dynamics and those assumed for control lead to ineffi-
cient or ineffective locomotion. Variations in encountered ter-
rain dynamics have warranted the application of differently
tuned control strategies to address a pre-determined set of
unique foot-ground interaction forces [1], [2]. Controllers op-
timized for a particular terrain, however, may quickly become
sub-optimal or unstable as terrain parameters experience
geographical variations; terrain category itself may change
quite abruptly, as exemplified by soil-sand boundaries found
near beaches. An expeditious manner of modeling foot-
ground interactions online, during the course of locomotion,
is warranted. Furthermore, an ability to quickly distinguish
among disparate terrain categories presents the opportunity
to expedite terrain characterization and task-specific control
synthesis.

A. Contribution

Our prior work [1] described a fast learning strategy for
achieving hopping on unknown terrain with a specified jump-
height task objective. Attempts to meet the objective provide
learning data from which to recover the unknown terrain
reaction forces and to meet the specified task objective.
Inspired by [3], [4], where terrain reaction force models
appeared to have discriminative properties, we now ask the
question: Are the learnt terrain reaction force models suffi-
cient to discriminate between terrain types? We, furthermore,
study the follow-on inquiry: Does the learning rate on novel
terrain improve when approximate knowledge of the nearest
available terrain category informs the learning process?

We show that the answer is affirmative in both cases. The
value of the work is that terrain reaction forces learned in
the context of control can serve the secondary role of clas-
sifying ground types as well as knowledge transfer for rapid
(e.g. low-shot) learning of similar but novel terrains. This
supports the conclusion that learning for control may assist
with approximate categorization of–and rapid adaptation to–
novel, diverse domains. Task-based learning, control, and
classification are shown to benefit from shared models.

B. Relevant Work

Terradynamic estimation, and subsequently informed con-
trol, occupies a significant role particularly in the context of
autonomous vehicles where operator experience and training
cannot be leveraged for corrections. Novel techniques must
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Fig. 1: Flowchart depicting the iterative optimal control/learning framework in Algorithm 1. With each jump, the algorithm
regresses an updated terrain model, and then uses the learned model to synthesize and execute a new optimal control signal.
New contributions are illustrated by the Classify Terrain sub-block, to the right.

be applied to estimate consequences of uncertain vehicle-
terrain parameters in-situ [5]–[7]. Terrain classification car-
ries varying degrees of criticality for different robotic plat-
forms. In the context of legged machines, knowledge of rele-
vant terradynamics is critical to safe and efficient operation.
Mismatches in relevant terrain and applied control strate-
gies lead to falls in the context of bipedal or quadrupedal
platforms while entailing severe performance degradation for
other legged mechanisms. Terrain classification approaches,
in the context of mobile robotics, have relied on a variety of
available sensing modalities and task-oriented affordances.

Exteroceptive Techniques. Visual information has been a
primary choice to aid slip and traversability estimation in
extraterrestrially-motivated vehicles [7]–[9]. Fusion of visual
sensing modalities with additional tactile information has
additionally been applied to enhance terrain classification ac-
curacy [10]. Other perceptual modalities have demonstrated
potential to classify terrain with varying levels of granularity.
Passive acoustic information was demonstrated to distinguish
not only material composition but a variety of hard, soft and
granular surfaces [3], [11]. Likewise, thermal imaging aids
the noninvasive assessment of granular terrain properties im-
pacting traversability [12], [13]. Augmentation with tactile-
force sensing enables distinguishing categorically different
locomotion surfaces during the course of mission execution,
without the need for dedicated probing procedures [14].

Proprioceptive Techniques. In the specific context of legged
mechanisms, measurement of joint force and torque are
conveniently exploited, whereby prescribed limb motions
allow various properties of the locomotion substrate to be
measured. The information obtained reveals terrain prop-
erties such as stiffness, friction and shape [2], [4], [15].
Exploratory motion strategies are then crafted to inspect
surrounding terrain for safety-critical information [4], [16].
Terrain classification and characterization afford robotic plat-
forms the capacity to distinguish un-traversable terrain as
well as assess traversability prior to mission execution.

Proprioceptive sensing augments exteroceptive modalities
to yield enhanced classification results. Vibration-based clas-
sifiers, for example, produce results that have been merged

with, or applied to train, vision-based terrain classifiers
deployed on vehicles intended for unmanned, unmonitored
operational situations [17]–[19].
Task-Concurrent Perception. Exploratory procedures ded-
icated to probing the environment may be time and task
prohibitive. In these scenarios, classification strategies em-
ploying sensing modalities already accessible and utilized
for normal operation are favorable. They rely on the ability
to measure disturbances from a nominal model of operation
during the course of locomotion [2], [20], Measured dis-
turbance patterns effectively encode terrain characteristics
of interest that, when classified or characterized, inform
selection of appropriate control strategies or tuning.
Classification Approach. Support Vector Machines (SVM)
[10], [11], [14] and neural networks [20], [21] are the
predominant classification approaches applied toward terrain
identification for mobile robotic applications.

We pursue an alternative classification approach whereby
an iterative, incremental learning strategy, based on Gaussian
Processes (GPs), is extended. We leverage a pre-existing
knowledge base, both as a foundation for accurate terrain
classification as well as a mechanism facilitating low-shot
learning of initially unknown robot-terrain dynamics.

II. LEARNING TO HOP

An online, iterative optimal control synthesis and learning
framework was previously presented [1] involving a cyclic
procedure (Fig. 1) to learn the terrain forcing model and
generate an optimal motion plan. Beginning with a solid
terrain reaction force model, the process generates an optimal
trajectory to meet a target hopping height. Applying it to
simulated granular media (GM) and collecting the dynamic
response provides data for training a Gaussian process (GP)
model of the terrain forcing. Utilizing the model, within the
optimal trajectory synthesis algorithm, leads to improved
task performance, with the hopper meeting the target ob-
jectives within 2-3 control-learning iterations. Experiments
employing this iterative control-learning procedure were
subsequently conducted, demonstrating the procedure on
categorically distinct surface types: solid ground, trampoline
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and granular media. Here, we briefly review the procedure
and underlying components; we refer the reader to [1] for
comprehensive detail.

A. System Dynamics

The one-dimensional hopper, illustrated in Fig. 2(a) is
modeled by three body masses: a linear motor, a thrust rod,
and a foot [22], [23]. Jumps are achieved by applying a force
between the motor and thrust rod which, in turn, transmits
forcing to the foot through the connecting spring. The closed-
form system dynamics are,

ẍf = −g +
1

mf
[k(α− ᾱ) + cα̇] +

1

mf
Fsub (1a)

α̈ = −
[
mf +mr +mm

mf (mr +mm)
(k(α− ᾱ) + cα̇) +

mm

mr +mm
u

]
− 1

mf
Fsub. (1b)

Masses of the motor, rod, and foot are mm, mr, and
mf , respectively. The value ᾱ is the resting length of the
spring (absent external forcing). The system state is x =
[xf ẋf α α̇]

T ∈ IR4, where xf and α denote the spatial
position of the foot and relative position of the thrust rod
with respect to the foot. Motor acceleration, u = β̈, serves
as the control input, where β is the relative position of the
motor with respect to the rod. Terrain reaction forcing is
modeled as Fsub > 0 during the stance phase of the hybrid
system. This quantity is initially unknown and presumed to
model solid ground. During the flight phase Fsub = 0. Spring
stiffness, k, and gravitational acceleration, g, are denoted.

B. Optimal Control

The task objective is to achieve a target jump height, as
illustrated in Fig. 2(b). The jump height is the difference
between initial rod height during the stance phase, x0r , and
the rod’s highest point during the flight phase, xfr , where
the rod height is xr = xf + α. Optimal trajectory synthesis
methods generate an optimal control signal, uopt, to meet the
task. Here, we use a direct collocation approach to transcribe
the trajectory optimization problem into a nonlinear program
(NLP) [23]. Task objectives, actuator limits, system dynamics
and other task-specific requirements are encoded as hard
constraints defining the optimization problem. The optimal
control synthesis relies on (1) an a priori robot model and
(2) a GP-based model of the ground substrate forcing.

C. Gaussian Process-based Terrain Model

The unknown quantity in the system, Fsub, is modeled as
the summation of multiple components,

Fsub(x) = F sg
sub(x) + µ(x) + rT (x)R−1(ŷ − µ(x̂)), (2)

where F sg
sub(x) is the ideal solid ground forcing model,

a known function of the hopper state [1]. The latter two
terms model the “defect” in the predicted substrate forcing,
Fsub(x), with respect to the solid ground model. They are
initially set to the zero function.

During hopping trials, measured state data passed through
a Kalman smoother estimates the accelerations to then re-
cover, from (1), the unknown forcing signal, F̂sub. Collected
state data is denoted, x̂ = [x̂1 x̂2 . . . x̂p]

T , where x̂i ∈
IR4. Associated measurements of the “defect” are maintained
as, ŷi = ∆Fsub(x̂i) = F̂sub−F sg

sub(x̂i). Together, x̂ and ŷ =
{ŷi} ∈ IRp comprise a set of p training samples, whereby
the latter two terms of (2) are learned using a composite
Gaussian process (CGP) [24]. The function µ(x) captures
the global trend in the training data as a linear combination
of basis functions, f(x) = [1, xf , ẋf , α, α̇]T , such that
µ(x) = f(x)TΘ, with coefficients Θ ∈ IR5. The last
term in (2) describes Z(x) ∼ GP(κ), a non-stationary, zero-
mean GP applied to the residual deviations from the global
trend evaluation, µ(x̂) ∈ Rp. A squared exponential kernel,
κ(x,x′), was selected to model covariance in the collected
data based on proximity between any two elements, x and
x′. The function R is the covariance matrix such that Ri,j =

κ(x̂i, x̂j) and rT (x) = [κ(x, x̂1) κ(x, x̂2) . . . κ(x, x̂p)]
T .

Algorithm 1 Iterative Optimal Control and Learning
1: procedure CONTROL AND LEARN(hopperControlTask)
2: training set, Γ← ∅
3: initialize CGP
4: while ¬TASKCOMPLETE(hopperControlTask) do
5: generate optimal control, uopt, using CGP-based

model, (1) and (2)
6: apply uopt on true terrain
7: measure hopper position trajectory
8: currentHopHeight← max(xf (t) + α(t))
9: apply Kalman smoothing to recover x̂ and (ẍf , α̈)

10: compute ŷi = ∆F̂sub(x̂i) from smoother data
11: if not classified then classify terrain per (3).
12: end if
13: if less than 2 hops then
14: append Γ with new data: (x̂, ŷ)

⋃
(x̂, ŷc∗)

15: else
16: append Γ with new data: (x̂, ŷ) .
17: end if
18: Γ̄← REDUCE(Γ)
19: update global trend, µ(x)
20: train GP with data: (x̂i, ŷi − µ(x̂i))
21: end while
22: end procedure
? blue text denotes low-shot learning algorithm modification

D. Iterative Control-Learning Procedure

Attempts to control a robotic hopper to optimally ac-
complish the hopping task yield novel learning experiences.
These collective experiences enrich a CGP-based dynamical
model of the system, in turn, better informing follow-on
control synthesis attempts. The original Algorithm 1, given
by Algorithm 1 excluding the blue text, delineates this iter-
ative learning procedure (as depicted in Fig. 1). The optimal
control solver employs the GP-based dynamical model to
synthesize an optimal control strategy accomplishing the
specified task. The synthesized control is applied to the
robotic hopper. If the control objective is not attained, mea-
surements taken during task execution generate additional
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Solid Ground Trampoline Granular Media(a) (b) (c)

Fig. 2: (a) A visualization and labeling of the one-dimensional (linear vertical-only) jumping robot model. (b) An illustration
of the desired jumping task achieved by controlling the motor mass to meet a target jump height. (c) Images of the three
hopping terrain types: solid ground, trampoline, and granular media.
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Fig. 3: Jump heights converge to target heights (dark green
dashed lines) as terrain substrate forcing is learnt using the
original Algorithm 1. Experiments were conducted on three
different surface types using the robotic hopper apparatus in
[23], depicted in Fig. 2(c).

training data. The training set, Γ, comprising tuples of
prior measured data, (x̂i, ŷi), is appended with this new
experiential data and the GP-based model is re-trained.

E. Experimental Application
The original Algorithm 1 was applied to an experimen-

tal robotic hopper apparatus for different surface types. A
rigid aluminum plate served as the solid ground substrate,
modeling an undeformable surface. A trampoline surface was
constructed from an elastic rubber-like sheet anchored tightly
to a rigid hollow frame. A bed of poppy seeds comprised
the granular media terrain [25]. Fig. 3 illustrates results for 3
targeted jump heights on different surfaces: 50 mm (granular
media), 60 mm (solid ground) and 70 mm (trampoline).
Measured hopper trajectories reach targeted jump heights,
within ±5%, after 8-10 control-learning iterations. Subse-
quent hopping iterations remained with ±5% of the target
height. These results were reproduced for jump heights in
the intervals [40, 80], [60, 90], and [30, 60], for solid ground,
trampoline and granular media ground types, respectively.
The intervals are achievable hop heights for the terrain type.

III. CLASSIFYING TERRAIN

Given that a mechanism for the hopping system to quickly
learn to meet the hop-height task objective exists, we now
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Fig. 4: A motor trajectory, designed to achieve a 60 mm
target jump height, was synthesized assuming a solid ground
model of the environment. The resulting terrain reaction
forces differ based on the terrain type.

explore the value of the learnt substrate force models towards
terrain classification. In particular, we show that the substrate
forcing models per terrain type can serve to recognize the
terrain category even when the terrain parameters differ
from those learnt. Classification is performed by comparing
the forcing predicted by the learnt models with the actual
forcing. We leverage a collection of over 800 robotic hopper
trajectories measured for various synthesized input control
signals, on each of the three categorically distinct surfaces.

A. Hopper-Terrain Data Sets

Trajectories associated with experimental robotic jumps
were collected and organized with respect to 3 terrain
types: solid ground, trampoline and granular media. Fig.
4 illustrates recovered terrain reaction forcing applied by
each surface type during the course of a jump. The hopper
apparatus was driven by an identical control signal for each.
The characteristics of each terrain manifest in distinct terrain
reaction forcing profiles exerted on the foot of the hopper
during the stance phase of each jump.

In total, we organized a collected set of 950 jump ex-
periments according to the terrain type on which each was
conducted. We furthermore designated Dofficial, a subset of
these hopper trajectories collected during repeated execution
of the original Algorithm 1 for several targeted jump heights
over each terrain type. Each experimental trial of the original
Algorithm 1 comprised 15 control-learning iterations; a trial
of the algorithm was conducted for each of the following
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terrain type-target height configurations: solid ground (40,
50, 60, 70, 80 mm), trampoline (60, 70, 80, 90 mm) and
granular media (30, 40, 50, 60 mm).

Training Data. A subset of trajectories in Dofficial was orga-
nized and denoted, Dofficial

train . This subset comprised trajecto-
ries measured during learning iterations 0-2, for solid ground,
and 0-8, for the other terrain types (i.e. iterations entailing
the majority of advancement in the learnt model). In total, we
have |Dofficial

train | = 87 labeled and measured hopper trajectories
encompassing experiments for the 3 terrain types, and driven
by widely differing input control signals synthesized in the
course of achieving the different target jump heights.

Test Data. The remaining 121 trajectories in Dofficial were
organized as validation data set, Dofficial

test . These correspond
to iterations 9-15 (or 3-15 for solid ground) of the iter-
ative control-learning procedure, associated with the same
experimental trials that yielded data in Dofficial

train . An additional
collection of 742 jump experiments over the different terrain
types was also available to leverage as test data. This set,
designated Dunofficial

test , comprises jumping trajectories mea-
sured during troubleshooting of the experimental setup as
well as exploration of Algorithm 1 variations. It encompasses
measurements subject to greater tracking error and noise,
variation in sampling rate as well as variation of surface
parameters (e.g. replacement of old poppy seeds, for GM,
as well as wear and replacement of trampoline elastic mate-
rial). We re-emphasize the mutual exclusivity of designated
training and test data sets, Dofficial

train ∩Dofficial
test ∩Dunofficial

test = ∅.

B. Classification Approach

Presume, now, that the hopper is jumping on unknown
terrain. We present a terrain classifier employing the input-
output data, (x̂, ŷ), typically recovered after a hop for
learning purposes. Prior to learning, however, the classifier
will first attempt to determine the surface type over which the
robotic hopper is operating. Identification of the terrain will
enable selection of a pre-existing knowledge base leveraged
to expedite learning and, in turn, achieve a desired control
objective in fewer control-learning iterations (§IV).

Training. The hopping data comprising the training data set
Dofficial

train is used to train a set of CGPs labeled by terrain type,
{CGPsg, CGPtramp, CGPgm}. Each CGP is trained using
measured hopper trajectories collected from experiments on
a single terrain type. These terrain-specific CGPs model the
forcing profile exerted by each terrain type as a function
of the hopper state space and accelerations. In particular,
they are informed by (x̂, ŷ) measurements collected during
early iterations of the Algorithm 1 when the learned model
of terrain forcing has yet to mature and different control
strategies are attempted (effectively exploring Fsub).

Procedure. Given that the reaction force profiles appear to
be unique for each terrain type (Fig. 4), we use them to
distinguish between the different terrain. In addition to the
recovered input-output data (x̂, ŷ), we generate predicted
input-output data (x̂, ŷc) where c ∈ C = {sg, tramp, gm}
based on CGPc evaluated on the set x̂ of trajectory data.

TABLE I: Confusion Matrix
[
Test Set, Dofficial

test

]
: Terrain

classifier validation using data collected in the same experi-
mental trials from which training data originated.

Ground Truth
Prediction sg tramp gm
sg 100% (65) 0% 0%
tramp 0% 100% (28) 0%
gm 0% 0% 100% (28)

TABLE II: Confusion Matrix
[
Test Set, Dunofficial

test

]
: Terrain

classifier evaluation using wider set of test data comprising
710 hopper trajectories, measured over each terrain types and
driven by varying input control strategies.

Ground Truth
Prediction sg tramp gm
sg 96.9% (250) 0.7% (2) 2.6% (5)
tramp 0% 92.8% (271) 0%
gm 3.1% (8) 6.5% (19) 97.4% (187)

Considering output data ŷ, ŷc as discrete measurements
of continuous time signals, we treat the L2-norm of the
difference between the recovered signal and the predicted
signal, for each class, as a similarity score. The minimal
similarity score determines the terrain category:

c∗ = arg min
c∈C

||ŷ(t)− ŷc(t)||L2
. (3)

Validation. The designated test sets, Dofficial
test and Dunofficial

test ,
were input to the classifier. The outcomes for the two sets
are given in the confusion matrices of Tables I and II,
respectively. The numbers in parenthesis are the numerical
quantities associated to the percentages. When evaluating
hops on terrain matching that from the training set, the
accuracy is 100%. When applying to more variable input
data reflecting different instances of the same terrain types,
the classifier had an overall accuracy of 95%. Per terrain
classification accuracy associated remained well above 90%.

IV. LOWER-SHOT LEARNING THROUGH KNOWLEDGE
TRANSFER

We modify Algorithm 1 to integrate the first-hop terrain
classification outcome. The classification information alle-
viates the challenge of modeling initially unknown terrain
dynamics; the task specializes, instead, to characterizing a
particular terrain type. We capitalize on terrain category by
leveraging the pre-existing terrain-specific CGP model to
expedite learning. The resulting iterative learning system
exhibits low-shot learning, as fewer hops are required to
achieve the specified task objective, even when misclassified.

Low-Shot Learning Approach. After classification, rather
than learn a custom terrain forcing CGP model with the
dataset (x̂, ŷ) dataset, the learning dataset is augmented
with the predicted tuples (x̂, ŷc∗

). After the second hop,
the same data augmentation is performed. The CGP training
process of the modified Algorithm 1, which includes the
blue text, thereby receives the amount of data equivalent to
four hops during the first two hops. Predictions associated
with the selected classifier CGP transfer knowledge and
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Fig. 5: Low-Shot Learning. Number of control-learning iterations required prior to achieving targeted jump height. (a)
Granular Media: Several variants of GM terrain were generated by varying the terrain’s volume fraction, φ. (b) Trampoline
Surface: Surface variants were created by adjusting effective elastic stiffness, kTR. (c) Terrain Misclassification: In cases
where terrain was misclassified during Iteration 0, low-shot learning continued to be accomplished. More control-learning
iterations were required to achieve targeted jump height compared to cases absent of misclassification. However, fewer
iterations were needed relative to the counterpart control experiments.

expedite learning of the initially unknown terrain dynamics.
Subsequent hops do not receive data augmentation. GP
updates halt when the hopper achieves the target height.

A. Evaluation Methodology

Evaluation of classification-enabled, lower-shot learning is
illustrated through several simulated experiments. Simulation
presents the opportunity to vary terrain-specific parameters
in addition to the terrain category. Both the granular media
and trampoline surfaces are each specialized into 4 different
variants; this is accomplished by varying volume fraction,
for GM, and effective spring stiffness for the trampoline. No
additional variants are derived for the solid ground model.
For each terrain variant, random noise is injected into the
measured hopper trajectories such that learning requires 7-9
iterations of the original Algorithm 1 to meet the hop height
objective, much like that required in the real experiments
(Fig. 3). A target jump height of 60 mm was specified for
each experiment. The proposed classifier and data augmen-
tation learning strategy was applied and compared to the
original, non-augmented learning strategy.

We expect experiments on the GM and trampoline terrain
variants to leverage relevant terrain knowledge bases and, in
so doing, demonstrate lower-shot learning. After the initial
jump in Iteration 0, only a handful more control-learning
iterations should be required prior to the hopper achieving its
target objective. This would be in stark contrast to baseline
experiments, where the same target objective was instead
achieved within 7-9 iterations.

B. Experimental Simulation

Granular Media. We simulate granular media terrain with
the validated physical equations presented in [22]. They have
been regularly applied to model poppy seeds [1], [23]. To
create variants of this granular surface, we adjust the volume
fraction (ie. compaction ratio), φ, describing the density
of the granular terrain. The permissible volume fraction
range, over which the model is valid, is small. However,
small changes to this parameter greatly impact the simulated
hopper trajectories. Fig. 5 plots the learning results on the
4 GM terrain variants. In each case, the terrain-informed

learning procedure (yellow) expedites the learning process
and facilitates achievement of the targeted jump height in
fewer iterations, as compared to the baseline experiments
(blue). In most cases, the low-shot learning procedures halves
the number of iterations (averages a 2.2x speed-up).

Trampoline. Similar results hold for the simulated trampo-
line surface. We model this surface as a nonlinear spring and
modify its effective elastic stiffness, k, to generate 4 variants
for testing. Fig. 5 presents results on this surface. In all
outcomes, the low-shot learning procedure allows the robotic
hopper to achieve the target height in fewer iterations than
the baseline method (averages a 2.9x speed-up). In several
cases, the number of iterations executed reduced by 75%.

Misclassification. We assess performance of the low-shot
learning procedure in the two misclassification scenarios
most likely to occur based on the confusion matrix of Table
II. In the first, a true GM surface is misclassified as solid
ground; in the second a true trampoline surface is misclas-
sified as GM. Fig. 5 presents the experimental outcomes.
Despite terrain misclassification, the data augmented learn-
ing procedure still facilitated fast task completion. Though
the misclassification degrades learning, it is still enhanced
relative to the uninformed baseline approach (1.5x speed-
up).

V. CONCLUSION

We demonstrated that the same external forcing model
learnt to achieve task-specific control objectives can serve to
distinguish different categorical models that lead to different
forcing signals during operation. Furthermore, within the
context of learning to hop to a target height over an unknown
ground substrate, we showed that employing the learnt
models for data augmentation during learning improves the
learning process. The augmented learning system exhibits
low-shot behavior relative to the uninformed learning system.
It speeds up learning by more than a factor of 2 when
correctly classified, and of 1.5 when incorrectly classified.
The work shows that models learnt for control can serve the
dual purpose of classifying terrain and informing low-shot
learning of terrain substrate models even when approximate.
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